Additional Lecture Deductive Verification in Action, Weizmann, Spring, 2001

Justification of the Reduction

The reduction is based on the observation that a state-sequence o satisfies the
compassion requirement (p;, ¢;) if either o contains only finitely many p;-states, or
it contains infinitely many ¢;-states.

The boolean variable nevermore; is intended to be set to 1 at a point, beyond
which, there will be no further p;-states. Thus, nevermore; predicts the absence of
pi-states. If this prediction is correct, then the newly introduced justice requirement
nevermore; V q; is equivalent to the original compassion requirement.

In the revised FDs D_, the prediction by nevermore; is implemented as a
non-deterministic assignment of 1 to mevermore;. Therefore, the correctness of
the prediction cannot be guaranteed.

To counter this difficulty, we modify the response property which we aim to
prove. The revised property claims that any @-state in which no mis-prediction
has been detected yet, must be followed by a goal state which, either satisfies
1), or detects a mis-prediction. Mis-prediction is identified as a state in which
nevermore; and p; are both true.
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Comparing General Rule RESP to the nevermore Reduction

y: natural initially y = 1

lo : loop forever do mg : loop forever do
¢1: Non-critical mi : Non-critical
P fy: request y | Po mg : request y
£3: Critical ms : Critical
£y : release y my : release y

Following are verification diagrams for the two approaches:

[ hy: at_ts }42-‘[ ho : at_ls ] féQ—[ ha :at Ly N —n(fs) ]

/l
at_ly N -y at_ly N n(fs) /\2 -y
[ hso : at_ms ] [ hso : at_ms ]
s s
[ hi: at_my ] [ hi: at_my ]
my

my
lho cat_ly A yl

[ ho:at L3V n(ls) N at by Ny ]
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Example: MUX-SEM

Reconsider program MUX-SEM:

in N : integer where N > 1
local y : {0,1} wherey=1
£y : loop forever do
/1 : noncritical
]ﬂ’ P[p] :: l2: request y
p=1 £3: critical
£y: release y

For which we wish to prove the response property
at_Lo[z] = > at_Ls[z]
We start by establishing the following invariants:

(Y20 Vi : (lt_€374[7:] — Y= 0
Vo Vi jriat_ly ofi] V at_Ly o[]] — — Mutual Exclusion
P33 : Yy = 0 — di: at_€3,4[i}
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MUX-SEM Continued

Applying the compassion—justice reduction, we introduce the boolean variables
nli], ¢ = 1,...,N (abbreviations for nevermoreli]).  The added justice
requirements are Js[i] : n[i] V —at_{5[i]. The mis-prediction predicate is given by:

N
misprediction : \/ at_Cofi] Ny A nfi]
i=1

The helpful justice requirements for this proof are Jo[z] and {J54[i] | i € [1..N]}.
The helpful conditions and ranking functions for these transitions are given in the
following table:

1d. p Requirement h(p) 3(p) |
Jolz] | nl[z] V —at_lo[z] | at_La[z] A —mn[Z] —n[z]

Jsli] | —at_{s]i] at_Llo[z] N n[z] A at_Ls[i] | ~n[z] V at_Ls]i]
Juld] | mat_L4]i] at_La[z] N n[z] N at_Lyfi] | ~n[z] V at_Ls 4]1]

The ranking functions range over the domain {0,1}. The assertion §(p) is true
at a state if the corresponding ranking of J(p) is 1. Usually, this is the case if
requirement p may still become helpful. If §(p) is false, then the corresponding
ranking is 0.
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Example: Dining Philosophers with One Contrary Philosopher Dining Philosophers Continued
local f :array [1..n] of natural initially f =1 Applying the compassion—justice reduction, we introduce two arrays of nevermore
A :_Ioop forever do i i variables, ns[i] and ns[i] corresponding to locations /5[i] and /3[i].
f1: Non-Critical _ _
o ly: request f[j] The'helpful justice requirements are J3 _g[z—1], Ja3[2], N
" Pl = l5: request f[j+1] {J5.5[7] | i € [z+1..N—1]} and Jy g[N]. The helpful conditions for these
Jj=1 24 : Critical transitions are given in the following table:
ls . release f[j]
| [ 4: release f[j+1] | | Id. p h(p)
[ _ ) Jy[z—1] at_Ly[z—1] N at_La[z] N nolz]
{o : loop forever do Js[2—1] at_ls[z—1] N at_fs]z] A nolz]
¢1: Non-Ciritical Jg[z—1] at_Lglz—1] N at_lo[z] N malZ]
£y : request f[1] Jolz at_laz] N —nalz
P[n] :: {3: request f[n] J3[z at_tl3[z] N —nslz
£y : Critical Jsli] 10 € [2+1. . N—1] | at_ls[z] A at_Lsi] A —nsli] A at_l3[i—1] A ngli—1]
ts: release f[1] Tali] -1 € [e+1.N—1] | at_Ls[z] A at_lsfi] A at_ls[i—1] A nali—1]
| L 4% release f[n] | | Jsli] 11 € 24 L.N—1] | at_lalz] A at_lsfi] A at_lai-1] A nali-1]
We wish to establish part of accessibility, expressible by j‘l[%} at,ﬁg[z] A at*i‘l[%} A at*§3[%_” A ”dx_ﬂ
. 5 at_ 3|Z N at_ 5 N at_ 3 —1] A ns -1
1/)(1,66- D (at7€3[z} - <> (at7£4[z])) J5N (J,t_£3z A at_EGN AN at_€3 N—1] A ns N—-1

for z € [2.N —1].
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Dining Philosophers: Ranking Functions

Additional Lecture

The following table presents the distributed ranking functions §(p) for each of
the helpful requirements J(p). The ranking functions range over {0, 1}, and the
assertion J(p) tells us when the ranking of J(p) is 1.

04[z—1] nalz] = at Ly, 4[z—1]

05[z—1] nolz] = at Ly, 5[z—1]

(56[2’—1] 1

02]2 at_lo[z] N —nolz]

03]z —ngz]

03 Z] NS [Z—Fl..N*l} N3 Z] A (at_£3[i*1] AN ’I’L3[Z'*1] — at_€0,,376[i])
54[2] 11 € [Z—‘,-IN*H at_€3[i*1} A ng[ifl] — at_go_.4:6[i]
Ssli] i€ p+ LN |1

(54[N] at,ég[N—l] A ng[N—l] — at,éo__4[N]
(55[N] at,/,g[N—].] A ’I’lg[N—].] — at,£0_15[N]
5[N] T

Assignment 1. Draw a verification diagram for the proof of accessibility for the
dining-philosophers system.
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The Centralized vs. Distributed Versions of Rule Well

The premises of the centralized version are:
m
D1. p — \/ hj
D2 hi Ap — (hp ASi=06 A =T) Vv |\ B A G0
In the distributed version, premise D2 is replaced by:

D2 hi Ap — (B ATV | 6i>060 A\ R
7=0
D3. hi/\p — q/\/de(sg-

Thus, in both versions, we have to identify for each requirement J;, the
helpful assertion h; characterizing the states at which progress is guaranteed
by satsisfaction of .J;.

The versions differ in the type of the ranking functions d; and the heuristics for
their identification.
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Identifying the Ranking Functions

Additional Lecture

In the centralized version, the ranking functions are determined to identify global
progress. They often are lexicographic tuples of well-founded domains.

For the distributed version, the ranking functions are often binary (range over
{0,1}). We can represent them by an assertion ¢; true whenever §; = 1. There
are essentially to heuristics for determining 4.

e §; should characterize the states from which .J; may still become helpful.

e —0; should characterize all J;-states immediately following an h;-state, and their
descendants. More generally, =6, should characterize all states at which J; is
not helpful and can never become helpful in the future.

We will illusrtate this on two of our running examples.
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The BAKERY Algorithm

Additional Lecture

y :array[l..N] of natural where y =0

[4o: loop forever do 1
¢1: Non-critical
N £y y[i] :=max(y[l],...,y[N]) + 1
I PL: b3 await ¥j # i :y[j] =0 V yli] < y[j]
- £s Critical (i)
ls: y[i] :==0
halz] : at_t5]Z]
£s[z]
(N [1.N]: at_ts[z] A p(i) ]
hg[l] H at,fg[i]
£5]i] £3]1]
h4[l] . at,&l[i]
' L4]7]
fsli] [ hsli] = at_ts[i]
q:at_lyz] |e—~
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Additional Lecture Deductive Verification in Action, Weizmann, Spring, 2001 Additional Lecture
With Centralized Ranking Functions With Distributed Ranking Functions
y :array[l..N] of natural where y =0 y :array[l..N] of natural where y =0
[/o: loop forever do T [4o: loop forever do 1
¢1: Non-critical ¢1: Non-critical
N by yli] == max(y[1],...,y[N]) +1 N Ly y[i] := max(y[l],...,y[N])+1
N PLls ey await i # i :yli] =0 Vgl < ylj] A PUL= ey await ¥ #:y[i] = 0V yli] < yli]
l4: Critical u(3) £4: Critical u(4)
ls: yli] =0 ls: y[i] :==0

[hg[z]  at_fo]7] 59 The ranking functions are given by:

—

bo[2] 52[2]: | at_fo[2]
(i [1.N]: at_ts]z] A pli) §:(Lylz] —yli]) | S3lil: [ at _Lo[z] vV at L3[2] A yli] <ylz] A at fz[z}H
. - : Oali]: | at_tolz] VvV al_t3lz] N yli] <ylz] A at_ls 4
[h?’m - at_Ls]i] 0: 3] 05): | at_tla[z] VvV at_Ls[z] A yli] <ylz] N at_ts3 5]i]
£3[d] £3[d]
[h4m Cat_lyi] 6 2]
. £4]7]
sl (hsli) : at_tsli]  6:1]
[ q: at_L4]z] ].—J
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Verification Diagram for Dining Distributed Ranking Functions
L Th ful heuristic here is to identify —h;-states followi hi-state:
r 2[2] { hal2] - at _Ga[2] A —mal7] } na[z] N e useful heuristic here is to identify states following an h;-state
r \ 04]z—1 —(ngfz] A at_tlsg[z—1])
at_ls[z] N nolz] 3 T 7o 1
tale—1] oo ~(nalz] A at Lolz—1])
[h4[z—1] : at,€4[zfl}]——[h5[zfl} : at,ﬁg,[z—l]] Solz—1] 1
Z5[Z*1} 62[2] at,ﬁg[z} N _‘ng[z}
le[z—1] d3[2] —ngz]
[he[z—l} : at—fe[z—ll]—ﬁ—~ 83li] 1 € [2+L.N—1] | —mgli] A —(at_Ls[i—1] A ngli—1] A at_ls5[i))
L J 04li] 20 € [241..N—1] | =(at_l3[i—1] A ns3[i—1] A at_t5]i])
VL h3[2] ) (lt_fg[z] A —|’n,3[2] J - 64 N _‘(at_€3 N—1] A ns N—1] A at_€576[N])
[ jng[i] nslz| 55N ~(al_€3[N—1] A ng[N—1] A al_lg[N])
([ N 46 V] 1
Ai:[z41.N—1] : at_L3[z] N at L3[i—1] A ng[i—1] £5i]
[ hiali] - at_la[i] A —mali] 2l hali] : at_Lai] £4]i] hs[i] - at,&;[i]} - A centralized ra.nking function can be obtained by counting how many requirements
L 7 J; currently satisfy §;.
r g J
[(at_ts]z] A at_ts[N—1] A ng[N—1] (6[N])
L4 N Us|N
[h4[N} : at,mN])L{ hs[N] : at_l5[N] )L.[%[N] : at,ﬂG[N]} .
nal] —
elgoal : at_l4]z] V mzspredzctwm:

Deductive Verification in Action, Weizmann, Spring, 2002 152 Deductive Verification in Action, Weizmann, Spring, 2002 153



