Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Classification of Programs
There are two classes of programs:

Computational Programs: Run in order to produce a final result on
termination.

Can be modeled as a black box.

x Y

—] -

Specified in terms of Input/Output relations.
Example:
The program which computes
y=14+3+---4+ 2z —1)
Can be specified by the requirement

y=a" .

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Reactive Programs

Programs whose role is to maintain an ongoing interaction with their
environments, rather than produce a final result upon termination.

Examples: Air traffic control system, Programs controlling mechanical devices
such as a train, a plane, or ongoing processes such as a nuclear reactor.

Termination is not necessarily expected, and the important functionality is
interaction with the environment.

Can be viewed as a green cactus (?) N

Such programs must be specified and verified in terms of their behaviors.

Course G22.3033.007 Lecture 1

R. Dewar and A. Pnueli

A Framework for Reactive Systems Verification

A computational model providing an abstract syntactic base for all reactive
systems. We use fair Discrete systems (FDS).
A Specification Language for specifying systems and their properties. We
use linear temporal logic (LTL).
An Implementation Language for describing proposed implementations (both
software and hardware). We use SPL, a simple programming language.

for validating that an implementation satisfies a
specification. Practiced approaches:

m Algorithmic verification methods for exploratory verification of finite-state
systems: Enumerative and Symbolic variants.

m A deductive methodology based on theorem-proving methods. Can
accommodate infinite-state systems, but requires user interaction.

Course G22.3033.007 Lecture 1

R. Dewar and A. Pnueli

Fair Discrete Systems

A fair discrete system (FDS) D = (V, O, 0, p, J, C) consists of:

e V — A finite set of typed state variables. A V'-state s is an interpretation

of V. ¥y — the set of all V-states.

e O C V - A set of observable variables.

© — An initial condition. A satisfiable assertion that characterizes the initial
states.

p — A transition relation. An assertion p(V, V'), referring to both unprimed
(current) and primed (next) versions of the state variables. For example,
x' = x + 1 corresponds to the assignment = := z + 1.

J =A{J1,...,Jr} A set of justice (weak fairness) requirements. Ensure
that a computation has infinitely many J;-states foreach J;, i« = 1,... k.
C = {{p1,q1),..-{Pn,aqn)} A set of compassion (strong fairness)
requirements. Infinitely many p;-states imply infinitely many g;-states.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

A Simple Programming Language: SPL

A language allowing composition of parallel processes communicating by
shared variables as well as message passing.

Example: Program ANY-Y
Consider the program
z, y: natural initially x = y = 0
Lo : while z = 0 do

s yimy+ 1] n [

mg : x::1:|
522

- P - - P —

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

The Corresponding FDS

xr,y : natural
e State Variables V: ™ 2 {4y, 41, 42}
Ty i {mg,m1}

e Initial condition: © : 7w =4y AN o =mg N x =1y = 0.

e Transition Relation: p: p, V py; V pe; V pmy, with appropriate disjunct
for each statement. For example, the disjuncts p, and py, are

p]: 7T/1:771/\7Té:7r2/\$12{1,‘/\y/:y
=0 A 71'/1251

pgot 7T1:£0 AN Vv
#0 A 71'/1:52

8

A Wé:ﬂ'g/\xlzzc/\ylzy

o Justice set: J: {—at_Ly, mat_Ly, mat_mg}.

e Compassion set: C: (.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Computations

Let D be an ¥Ds for which the above components have been identified. The
state s’ is defined to be a D-successor of state s if

i !
(5. 5') I pp(V, V).
We define a computation of D to be an infinite sequence of states
0 1 80y81, 52, ---y

satisfying the following requirements:

e Initiality: sg is initial, i.e., s = O.

e Consecution: For each 5 = 0,1, ..., state s;41 is a D-successor of state
Sj.

e Justice: For each J € J, o contains infinitely many .J-positions

e Compassion: For each (p,q) € C, if o contains infinitely many p-
positions, it must also contain infinitely many g-positions.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Examples of Computations

Identification of the FDS Dp corresponding to a program P gives rise to a
set of computations Comp(P) = Comp(Dp).

The following computation of program ANY-Y ccorresponds to the case that
my is the first executed statement:

m £
(m1: Ly, mo: mqg ; z: 0, y: 0) — (m1: Lo, wo: mq; = 1, y: 0) —
T T
(w1t Lo, mo: my; z: 1, y: O)—L_Q

The following computation corresponds to the case that statement ¢; is
executed before my.

4 £
(m1: Ly, mo: mg ; z: 0, y: 0) ~0, (m1: €1, wo: mg ; z: 0, y: 0) N

m £q
(m1: £y, mo: mg; z: 0, y: 1) &(71’1: Lo, mo: my; x: 1, yr 1) —

(m1: lg, mor my ;@ 1,y 1) — - = -

In a similar way, we can construct for each n > 0 a computation that
executes the body of statement ¢; n times and then terminates in the final
state

(12 Lo, mar my; x: 1, y: n).

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

A Non-Computation SPL: Syntax

While we can delay termination of the program for an arbitrary long time, we Statements
cannot postpone it forever.

Thus, the sequence e skip — A do-nothing statement.

e y := e — an assignment. Assign the value of expression e to variable y.

) ¢
(m1: £y, ™ot mo ; xz: 0, y: 0) -0, (m1: £y, w3t mg ; xz: 0, y: 0) N e await b — Wait until the value of the boolean expression b becomes true.
) ’ . .
(m1: Lo, mor mo s m: 0,y 1) —% (mq: €1, mor mo sz 0, y: 1) —5 e Compound Statements — If b is a boolean expression, and S, S;, S5 are
))
(m1: Ly, mor mqg; z: 0, y: 2) -9, (m1: L1, wo: mqg; z: 0, y: 2) , statements, then so are

m Sy; S5 — Concatenation. Execute Sy first and then Ss.

‘o
(m1: Ly, mo: mg; x: 0, y: 3) —> --- .
m [S] - Grouping.

in which statement myg is never executed is not an admissible computation. m if b then S, else S; — Conditional. Execute S if b evaluates to 1
This is because it violates the justice requirement —at_mg contributed by (true). Otherwise, execute Ss.
statement my, by having no states in which this requirement holds. m while b do S — a while statement. Repeatedly execute S as long as b

o] o evaluates to 1. If initially b ~ O then this is equivalent to skip.
This illustrates how the requirement of justice ensures that program ANY-Y

. e Abbreviations
always terminates.

m if bthen S ~ if b then S else skip

Justice guarantees that every (enabled) process eventually progresses, in spite = when bdo S ~ [await b; S]
of the representation of concurrency by interleaving.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Syntax — Declaration

A declaration has the form
{{mode)} variable;, variables,. . .,variable: (type) {where ¢}
where the optional (mode) is one of the following:

e in — Specifies variables that are input to the program/process. Cannot be
modified inside the unit.

e local - Specifies variables that are local to the program/process but are not
recognized out of it.

e out — Variables that are an output of the program/process. Cannot be
modified outside the unit.

e in-out — Variables which can be modified both inside and outside the unit.

The (type) can be a basic type which are integer, natural, bool (boolean) or
[L..U] (an integer in the range L..U).

It can also be an array type of the form array [L..U] of {type).

The optional where clause specifies constraints on the initial values of variables.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Syntax — Processes and Programs
A process has the form
{{process_name) :: } [{{declarations); } (statement); {label) :]

where (declarations) are O or more declarations, separated by “;". Thus, every
process terminates in a label which denotes the location of control after the
process has terminated. We refer to the statement as the body of the process.

A program has the form
{{declarations); } Pi|| - - - || P,

where each P;, 2 = 1, ..., k is a process.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Labels

It is assumed that every statement is labeled. For a statement S, we define
pre(S) to be the preceding label which is closest to S in the program.

We also define post(.S) inductively as follows:

If S; ¢ :is the body of a process, then post(S) = £.

If S =[Si;--- Sk], then post(S;) = pre(S;+1) fori =1,...,k—1 and
post(Sy) = post(S).

If S = if b then S; else S5 then post(S1) = post(Sa) = post(S).

e If S = while b do S; then post(S:1) = pre(S).

For a label ¢; within process P;, we write at_/; as an abbreviation for

7Tj:£i

Course G22.3033.007 Lecture 1

Consider the following process:

Then we have:

P o

For Example

bo: x:=1

£1: while y > 0 do
by: x:=x+2
bs: y:=y—1

by: xo:=x—1

65:

S |post(S)
Co:vwns by:-n3 ly s
Oy - A
O 2,
Oy --- 5
Oy ivvns Byt 4
Oy 03
63:--- fl

R. Dewar and A. Pnueli

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

SPL: Semantics

Let P :: declaration; Py || --- || Py be a program. We proceed to construct
the ¥FDs D, corresponding to program F.

State Variables As the state variables, we take all the variables declared in
the program and add to them a set of control variables

Ty ...y Tk
For each i« = 1,...,k, the domain of ; is the set of labels appearing in
process S;.

For example, for program ANY-vV, the state variables are

xr,y : natural
V: ™1 : {fo,fl,fg}
o : {mg,mi}

Observable Variables At this point, we take O = V.

Initial Condition As the initial condition, we take the conjunction of all the
where clauses plus the conjunction

m = pre(S1) A
For example, the initial condition for program ANY-Y is given by

A 7 = pre(Sk)

O : 71'1:50/\ T = My A LZZ:y:O

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

The Transition Relation

For a subset of variables U C V, we denote pres(U) = /\ (z' = z).
zeU

The transition relation p is formed as a disjunction which standardly contains
the disjunct p;g. : pres(V'). In addition, each statement S in the program,
excluding concatenation statements, contributes a disjunct p, according to the
following recipe:

e The statement S = skip in process P; contributes the disjunct
7 = pre(S) A m, = post(S) A pres(V — {m;})
e The statement S = [y := €] in process P; contributes the disjunct
7= pre(S) A m = post(S) A y' =e A pres(V — {m;,y})
For example, statement £; in program ANY-Y contributes the disjunct

mi=€ AN Ti=b Ny =y+1 A pres({ma, z})

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Transition Relation — Continued

e The statement S = await b in process P; contributes the disjunct
7 = pre(S) A b A m = post(S) A pres(V — {m;})

e The statement S = if b then S; else Sy in process P; contributes the
disjunct

m; = pre(S) A [y _‘Z 2 W;zzzgg;;] A pres(V — {m;})

T

e The statement S = while b do S in process P; contributes the disjunct

- b A m = pre(Sh) '
m; = pre(S) A [V b A = post(S) N pres(V — {m;})

K3

For example, statement £y of program ANY-Y contributes the disjunct

=L A =0 A m=Lo) e (fryy)
Pe V. z#0 A m =4 P 2oy

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Justice Requirements

Each occurrence within process P; of a statement S which is a skip, an
assignment, a conditional or a while statement, contributes to the justice set
the requirement

Jg o m # pre(S)

An occurrence within P; of a statement S = await b, contributes the justice
requirement:

J

g+ —(mi=pre(S) A D).

For example, the justice set for program ANY-Y is

T+ Am # Ly, ™1 F# L1, T2 F Mo}

The implication of the justice requirements are:
No statement is continuously enabled without being executed.
or, equivalently,

If S is continuously enabled it must eventually be executed.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Justice is not Enough. You also Need Compassion

The following program MUX-SEM, implements mutual exclusion by
semaphores.

y : natural initially y = 1

[£y : loop forever do mgo : loop forever do
¢1 : Non-critical m1 : Non-critical
£5 : request y [mgy : request y
£3 : Critical ms : Critical
£y : vrelease y my : release y
- P - - P -

The semaphore instructions request y and release y respectively stand for

(await y > 0; y:=y — 1) and y:=y+ 1.

The compassion set of this program consists of

C: {(at_ly N y >0, at_¥s), (at_ma A y >0, at_ms)}.

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Program MUX-SEM

should satisfy the following two requirements:

e Mutual Exclusion — No computation of the program can include a state in
which process P; is at £3 while P; is at ms.

e Accessibility — Whenever process P; is at £o, it shall eventually reach it's
critical section at £3. Similar requirement for Ps.

Consider the state sequence:

o: (by, mo, 1) — -+ —

) =
(2, m3, 0) 2 (45, myg, O) 5
<£27 mo, 1> ﬂ) <£27 mi, 1) ﬂ) <£25 ma, 1> ﬂ)

(€2, mg, 0)| — -,

which violates accessibility for process P;. We should not allow this state
sequence as a computation.

If the only fairness requirement associated with statement £5 : request y
were that of justice, the above state sequence would be a computation. This is
because statement ¢5 is not continuously enabled. In fact, it is disabled on all
states of the form (45, mg, 0).

Course G22.3033.007 Lecture 1 R. Dewar and A. Pnueli

Compassion Saves the Day

Instead, we associate with statement /5 : request y the compassion
requirement
(at_ls N y >0, at_tl3)

implying
Statement £2 cannot be infinitely often enabled without being executed

Due to this compassion requirement for £5, the violating state sequence is not
a computation, and accessibility is guaranteed.

Conclusion: Justice alone is not sufficient !!!

Course G22.3033.007 Lecture 1

R. Dewar and A. Pnueli

Compassion Requirements

Each occurrence within P; of a statement S = request vy, contributes the
compassion requirement:

C

s :

(mi = pre(S) N y >0,

m; = post(S)).

