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Extending SPL

The last example introduced 4 new statements into SPL. Let us make this
introduction formal.

e The statement S = Critical in process P; contributes the transition relation
disjunct

7 = pre(S) A m; = post(S) A pres(V — {m;})

and the justice requirement J : m; # pre(S), implying that the critical
section always terminates.

e The statement S = Non-critical in process P; contributes the transition
relation disjunct

7 = pre(S) A m; = post(S) A pres(V — {m;})

and no justice requirement, implying that the non-critical section may choose
not to terminate.
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Sempahore Statements

e The statement S = request y in process P; contributes the transition
relation disjunct

m=pre(S) AN y>0 Ay =y—1 A m = post(S) A
pres(V — {m;, y})

no justice requirement, and the compassion requirement
Cy: (mi=pre(S) A y>0, m#pre(S)),

implying that, if this statement is infinitely often enabled, it will be eventually
executed.

e The statement S = release y in process P; contributes the transition
relation disjunct

mi=opre(S) Ay =y+1 A 7w = post(S) A pres(V — {mi,y})

and the justice requirement J : m; # pre(S).
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Demonstrating what can be achieved by Formal Verification

We will illustrate how formal verification (when it works) can aid us in the
development of reliable programs.

Consider the following program TRY-1 which attempts to solve the mutual
exclusion problem by shared variables:

local y;,y2 : boolean where y; =y, =0

¢y : loop forever do [myg : loop forever do

¢1 : Non-Critical m1 : Non-Critical

£2 :await -y, mg :await -y
P | Pe::

sy =1 mg 1y =1
44 : Critical my : Critical
s :y; :=20 ms 1y =0

Variables y; and yo signify whether processes P; and P, are interested in
entering their critical sections.
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Program Properties: Invariance

A state s is said to be reachable by program P (P-reachable) if it appears in
some computation of P.

Let p be an assertion (state formula). Assertion p is called an invariant of
program P if every P-reachable state satisfies p.

For program TRY-1, the property of mutual exclusion can be specified by
requiring that the assertion

P exclusion, _|(0,t_£4 A at_m4)

be an invariant of TRY-1. This implies that no execution of TRY-1 can ever get
to a state in which both processes execute their critical sections at the same
time.
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Invoking TLV File tryl.spl
To check whether assertion © ..o, iS an invariant of program TRY-1, we local y1 : bool where yl1 = F;
invoke the model checking tool TLV, a model checker based on the SMV tool y2 : bool where y2 = F;

developed in CMU by Ken McMillan and Ed Clarke.

. Pi1:: [1_0: loop forever do [
We prepare two input files: tryl.spl which contains the SPL representation 1

] . _1: noncritical;
of TRY-1, and tryl.pf, a proof script file. The proof script file contains some 1.2: await !'y2;
printing commands, definition of the assertion ... us0n and a command to 1.3: y1 := T;
check its invariance over the program. 1 4: critical:
1.5: y1 :=F ]

We will present each of these input files.

I

P2:: [m_0: loop forever do [
m_1: noncritical;
m_2: await !yi;
m_3: y2 := T;
m_4: critical;
m_5: y2 :=F ]
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File tryl.pf
Print "Check for Mutual Exclusion\n";

Let exclusion := !(at_1_4 & at_m_4);
Call Invariance(exclusion);

The call to procedure Invariance invokes the process which checks whether
any reachable state violates the assertion exclusion.
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Results of Verifying TRY-

The results of model-checking TRy-1 are

>> Load "tryl.pf";

Check for Mutual Exclusion

Model checking Invariance Property
**x*x Property is NOT VALID x*x*x*
Counter-Example Follows:

---- State no. 1 =
pil = 1.0, pi2 = m_0, yl =0, y2 =
---- State no. 2 =
pil =1_1, Pi2 = m_0, yl =0, y2 =
---- State no. 3 =
pil = 1_1, pi2 = m_1, yl =0, y2 =
---- State no. 4 =
pil =1_1, pi2 = m_2, yl =0, y2 =
---- State no. 5 =
pil = 1_1, pi2 = m_3, yl =0, y2 =
---- State no. 6 =
pil = 1_2, pi2 = m_3, yl =0, y2 =
---- State no. 7 =
pil = 1.3, Pi2 = m_3, yl =0, y2 =
---- State no. 8 =
pil = 1.3, pi2 = m_4, yl =0, y2 =

-—--— State no. 9 =
pil = 1_4, pi2 = m_4, yl =1, y2 =

1
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P o

: loop forever do

R. Dewar and A. Pnueli

Expressed in a More Readable Form

local y1, yo

¢1 : Non-Critical
£s : await -y,

3y =1
¢4 : Critical
s :y1 :=0

The counter example is:

<€05 mo, Y1 : 07 Y2
<‘e15 ma, Y1 :
(L3, m3, y1 :

reaching the state (€4, my, y1 : 1, ya :

07 Y2
07 Y2t

O>a<£17 mo, Y1 :
: O>a<£1a ms3, Y1 :
0), (€3, ma, y1 :

Py ::

0, y2 :
07 Y2
07 Y2t

: O>a<£27 ms3, Y1 :
1), (€4, my, y1 :

: boolean where y; = yo = 0

[mg : loop forever do
: Non-Critical
:await -y
tyg =1

: Critical

1y : =0

O>a<£17 mi, Y1 ¢ 07 Ya !

07 Y2

17 Y2t

0),
:0),

1

1) which violates mutual exclusion!

Obviously, the problem is that the processes test each other's y value first
and only later set their own y.
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Second Attempt: Set first and Test Later

The following program TRY-1 interchange the order of testing and setting:

P

Let us see whether the program is now correct.

local

Y1, Y2

¢y : loop forever do
: Non-Critical
typ =1
rawait —ys

: Critical

ty1 =0

Py ::

: boolean where y; = yo = 0

[mg : loop forever do
: Non-Critical
tyg =1
rawait —y;

: Critical

1y :=0
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Program Properties: Absence of Deadlock

A state s is said to be a deadlock state if no process can perform any action.
In our ¥FDS model, the idling transition is always enabled. Therefore, we define
s to be a deadlock state if it has no D-successor different from itself.

Mathematically, we can characterize all deadlock states by the assertion
§: -3AV AV :p(V, V)
and then check for the invariance of the assertion —.

To check for the interesting properties of program TRY-2, we prepare the
following script file:

Print "Check for Mutual Exclusion\n";
Let exclusion := !(at_1_4 & at_m_4);
Call Invariance(exclusion);

Run check_deadlock;
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Model Checking TRY-2
We obtain the following results:

>> Load "try2.pf";
Check for Mutual Exclusion
Model checking Invariance Property
**x*x Property is VALID *xx*
Check for the absence of Deadlock.
Model checking Invariance Property
*x% Property is NOT VALID *xx*
Counter-Example Follows:
---- State no. 1 =
pil =10, pi2 = m_0, yl =0, y2 =0,
---- State no. 2 =
pil = 1_1, pi2 = m_0, yl =0, y2 = 0,
---- State no. 3 =
pil = 1_1, pi2 = m_1, yl =0, y2 = 0,
--—— State no. 4 =
pil = 1_1, pi2 = m_2, yl =0, y2 =0,
---- State no. 5 =
pil = 1_1, pi2 = m_3, yl =0, y2 =1,
---- State no. 6 =
pil =1_2, pi2 = m_3, yl =0, y2 =1,
---- State no. 7 =
pil = 1_3, pi2 = m_3, yl =1, y2 =1,

R. Dewar and A. Pnueli
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In a More Readable Form

local yi,y2 : boolean where y; = yo = 0

¢y : loop forever do [mg : loop forever do
¢1 : Non-Critical m : Non-Critical
Py 52 g&vai ! | Pe:: m2 y2 : !
3 Y2 mg :await Y1
¢4 : Critical my : Critical
i ls :y1 :=0 | | ms 1y =0 |

The counter example is:

<€0a mo, Y1 : 07 Y2 ! O>a<£17 mo, Y1 : 07 Y2t O>a<£17 mi, Y1t 07 Y2t 0>
(€1, ma, y1: 0, y2 : 0), (€1, m3, y1: 0, y2: 1),(la, m3, y1: 0, y2: 1),

(€3, ma, y1: 1, yo : 1)

reaching the deadlock state (£3, ms, y1 : 1, yo : 1)!
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Try a Different Approach

The following program TRY-3 uses a variable turn to indicate which process
has the higher priority.
local turn :[1..2] where turn = 0

£y : loop forever do
21 : Non-Critical

my : loop forever do
m; : Non-Critical

P £y :await turn =1 | Py my :await turn = 2
£3 : Critical ms : Critical
Lyt turn := 2 my :turn = 1
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Program Properties: Response

This property refers to two assertions p and q. Written p ~~ ¢, it means

Every occurrence of a p-state must be followed by an occurence of a
g-state

The response construct can be used to specify the property of accessibility. For
example, the response property

(]JLKQ ~ (Lt,@g

requires for program TRY-3 that every visit to /2 must be followed by a visit to
ls.

To model check this property, we prepare the following file try3.pf:

Print "Check for Mutual Exclusion\n";
Let exclusion := !(at_1_3 & at_m_3);
Call Invariance(exclusion);

Run check_deadlock;

Print "\n Check Accessibility for Pi\n";
Call Temp_Entail(at_1_2,at_1_3);

Print "\n Check Accessibility for P2\n";
Call Temp_Entail(at_m_2,at_m_3);
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Model Checking TRY-3
We obtain the following results:

>> Load "try3.pf";

Check for Mutual Exclusion

Model checking Invariance Property
**x*x Property is VALID *xx*

Check for the absence of Deadlock.
Model checking Invariance Property
*x*% Property is VALID *x*x

Check Accessibility for P1
Model checking...

*x% Property is NOT VALID *xx*
Counter-Example Follows:

---— State no. 1 : pil =1_0, pi2 = m_O0,
--—— State no. 2 : pil =1_1, pi2 = m_0,
---- State no. 3 : pil = 1_2, pi2 = m_0,
--—— State no. 4 : pil = 1_3, pi2 = m_O0,
---- State no. 5 : pil = 1_4, pi2 = m_O,
---- State no. 6 : pil = 1_0, pi2 = m_O,
---- State no. 7 : pil = 1_1, pi2 = m_0,
---— State no. 8 : pil = 1_2, pPi2 = m_0,

Loop back to state 8
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turn
turn
turn
turn
turn
turn
turn
turn

- - -

M

-

-

N NP, PR PR

-
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In a More Readable Form Finally a good program for Mutual Exclusion

Following is a good shared variables solution to the mutual exclusion problem.

local turn :[1..2] where turn = 0 Peterson’s for 2 Processes:
£o : loop foreve_r _dO my : loop foreve.r _d° local y,y> :boolean where y; =y, = 0

£1 : Non-Critical m : Non-Critical s : {1,2} where s = 1
P £y rawait turn = 1 | P mo :await turn = 2 B

§3 :fCrltlca_l , ma3 ffntlc,ai ' ¢, : loop forever do i [m, : loop forever do

4 Lrurn 1= My DU 2= 21 : Non-Critical my : Non-Critical
The counter example is: £ (yl,.s) = (1,1) I ma: (y%_s) = (1,2)

l3 rawait yo =0 V s # 1 mg :await y1 =0 V s # 2
(Lo, mo, turn : 1), (1, mg, turn : 1), (€, mg, turn : 1) £4 : Critical my : Critical

(€3, mg, turn : 1), {(lg, mg, turn : 1), (Lo, mg, turn : 2) £s :y1:=0 ms :ys := 0

(€1, mg, turn : 2), (€, mg, turn : 2)
- P - - P, —

Variables y; and y. signify whether processes P, and P are interested in
entering their critical sections. Variable s serves as a tie-breaker. It always
contains the signature of the last process to enter the waiting location (¢3,
mg3). Model checking this program, we find that it satisfies the three properties
of (invariance of) mutual exclusion, absence of deadlock, and accessibility.
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Dealing with Atomicity

The standard translation from SPL to the FDS representation, translate each
statement into a single atomic transition. Since FDS transitions are executed
by interleaving, one may wonder how faithful is this translation to real parallel
execution.

Consider the following example:

local y :integer where y = 0

by: y:=y—+1 I mg: y:=y—1
by mi :

All interleaving executions of this program terminate with the final value of
y = 0. However, a real parallel execution of this program may terminate with
final results of y € {—1,0,+1}.

Recall that the translation of such a program into machine language
instructions may translate the assignment y := y + 1 into an instruction
sequence such as req; := y; reg; := reg; + 1; y := reg,, where reg; is a
register local to the left process. Thus, the machine program which is finally
executed is equivalent to:

local y,reg,, reg, :integer where y = 0

by reg =y mg: Tegy =Y

b1 regq = regy + 1 I my:  Tegy 1= regy — 1
by y:i= regy Mg : Y 1= Teg,

ls: ms :

Course G22.3033.007 Lecture 2 R. Dewar and A. Pnueli

Dealing with Atomicity — Continued
The Machine Program

local 1y, 7,72 :integer where y = 0

by: 7ri:i=uy mg: To:i=1y
bi: rmi=ri+1 I mi: ro:i=r1r9— 1
by 1 y =1 mo: Y 1= 179
£3! msa :

can yield the final results y € {—1,0,+1}, as can seen by the following 3
(interleaved) executions:

Lo, my,ri:1,72:0, y:0) , (Lo, ma, 71:1, ro:—1, y:0),
L3, mg, r1:1, ro:—1,y:1), (€3, m3, r1:1, r2:—1, y:—1)

w

L3, mo, i1, roi—, y:1) |, (€3, ma, riil, roil, yil)
£3, ma, r1:1,75:0, y:1), (€3, mg, r1:1, r2:0, y:0)

Ly, m1, r1:1, 72:0, y:0) | (Lo, ma, r1:1, r9:—1, y:0),
Lo, ms,ri:1, roi—1, y:—1), (€3, mg, r1:1, ro:—1, y:+1)

N N~~~ o~ o~~~

The problem with the original program is that it contains statements such as
y := y + 1 which perform two accesses to the shared variable y in a single
atomic transition.

To remedy this situation, we will restrict the number of accesses to shared
variables that may occur within each statement.

Lo, mo, 1:—, m2:—, ¥:0), (€1, mg, r1:0, To:—, y:0) , (€1, my, 71:0, 72:0, y:0)

Ly, mo, r1:—, ro:—, y:0), (€1, mg, r1:0, r2:—, y:0) , (€2, my, 71:0, 72:—, y:0)

Ly, mo, r1:—, ro:—, y:0), (€1, mg, r1:0, r2:—, y:0) , (€1, mq, 71:0, 72:0, y:0)
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Limited Critical References (LCR) Programs

A program is called an Limited Critical Access program (an LCR program)
if each statement contains at most one reference to a shared variables. Note
that that original y := y + 1 program was not an LCR program, while the
(r1, r2)-program is LCR.

Claim 1. If P is an LCR program, then its interleaved execution is equivalent
to a really parallel execution of P.

To justify the claim, consider the following diagram which depicts a realistic
execution of the (71, r5)-program.

£ 4 2
L /1 T )
Wl I U L

mo ma m2

In this picture, each instruction takes some positive time to execute. Within
each instruction, we marked by red the single access to a shared variable. We
assume that such accesses to shared memory are atomic. We claim that the
result of such an execution will be equivalent to an interleaved execution in
which instructions ordered according to the ordering in time of the critical
accesses. For the displayed example, this will be the sequence:

mo, eOa el: my, £27 ma
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There are two points in which we can generalize the LCR definition, such that
Claim 1 will still hold.

We define a reference to a variable within process P; to be critical if it is

e A writing reference to a variable which is accessed (read or written) by a
process parallel to FP;, or

e A reading reference to a variable which is modified by a process parallel to
p;.

In particular, we exclude from this definition a reading reference to a variable
which can only be modified by P; itself.

A program is defined to be an LCR program if each transition contains at most
one critical reference.

Another extension allows statements of the form await (p V ¢), where
each of p, g contains at most one critical reference. The justification for this is
that every such await statement can be replaced by the following LCR segment:

l1: done := 0
£ :  while —done do
£3 : if p then
by : done :=1
l5 . if g then
bg : done :=1
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The Atomic Version of Peterson’s Program is not LCR
Reconsider Peterson’s program:

local yi,y> : boolean where y; = yo =0

S : {1,2} where s =1
¢y : loop forever do i [y : loop forever do i
¢1 : Non-Critical m1 : Non-Critical
2 2(y1,8) = (171) || ma :(y2>3) = (172)
l3 :await yo =0 V s # 1 mg :await y1 =0 V s # 2
£4 : Critical my : Critical
i ls :y1 :=20 ] i ms Yy =0 ]
- P — - P —

This program is not LCR. The main culprits are the joint assignments ¢ and
myo. Note that the await statements do satisfy the (extended) LCR restriction.

There are two ways to transform this program into an LCR program.
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Bad LCR Version of Peterson(2)

£y
£y
£
4y
Ls
L

local 1, yo

S
£, : loop forever do
: Non-Critical
:s:=1
typ =1
rawait yo =0 V s # 1
: Critical
ty; =0
- P -
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: boolean where y; = y2 =0
: {1,2} where s =1

This version violates mutual exclusion, as can be
computation:

[ : loop forever do

: Non-Critical

18 := 2

tyg =1

rawait y; =0 V s #£ 2
: Critical

tys =0

- P, —

observed by the following

2, (€3, m3, y1 : 0, y2: 0, s:2) N

m ¢
<£37m4ay1:05y2:178:2>—4> <£3am5:y1:07y2:153:2> —3>

¢
<£47 ms, yl:la y2:178:2>—4> ‘<£5a ms, yl:la y2:155:2>‘
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Good LCR Version of Peterson(2)

: boolean where y; =y, =0
: {1,2} where s =1

local 1, y2

s
(¢ : loop forever do
21 : Non-Critical
eg Y1 = 1
l3:s:=1
ly:await yo =0 V s # 1
U5 : Critical
L _66 Y1 = 0
- P -

[ : loop forever do

: Non-Critical

tyg =1

18 =2

rawait y1 = 0 V s #£ 2
: Critical

1y :=0
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- P —

This program satisfies the properties of mutual exclusion, deadlock absence,
and accessibility.

It can be generalized to deal with NV processes.



