Algorithms for Model Checking Having demonstrated the benefits of formal verification, we proceed to describe algorithms and methods by which such verification can be accomplished. A run of \mathcal{D} is a finite or infinite state sequence which satisfies the requirements of initiality and consecution but is not necessarily fair. A run segment is a finite state sequence which satisfies the requirement of consecution. A state s is \mathcal{D} -accessible if it appears in some \mathcal{D} -run. System \mathcal{D} is finite-state if it has only finitely many accessible states. An SPL program with a fixed number of processes such that all of its variables are declared to range over a finite domain (boolean or enumerated type) corresponds to a finite-state FDS. We start by presenting algorithms for the verification over finite-state systems of the following two classes of properties: - The invariance property Inv(p), claiming that all \mathcal{D} -accessible states satisfy the assertion p. - The response property $p \rightsquigarrow q$, claiming that every (\mathcal{D} -accessible) p-state must be followed by a q-state. ## The State-Transition Graph A state-transition graph (S,E) is a directed graph whose nodes S are states of some system $\mathcal D$ and whose edges E connect state s to state s iff s is a $\rho_{\mathcal D}$ -successor of s. The following algorithm constructs the state-transition graph $G(S_0, \rho)$ which contains all the states reachable from the set S_0 by ρ -transitions. #### Algorithm CONSTRUCT-GRAPH (S_0, ρ) — construct the state-transition graph $G(S_0, \rho)$ - Initially place in S all states that are in S_0 . - Repeat the following step until no new states or new edges can be added to G. - Step: for some $s \in S$, let s_1, \ldots, s_k be the ρ -successors of s. Add to S all states among $\{s_1, \ldots, s_k\}$ which are not already there and add to E edges connecting s to s_1, \ldots, s_k . - Return (S, E) Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli Course G22.3033.007 Lecture 3 ## **Example:** a **Simpler** MUX-SEM Below, we present a simpler version of program MUX-SEM. The semaphore instructions request y and release y respectively stand for $$\langle \mathsf{when} \ y = 1 \ \mathsf{do} \ y := 0 \rangle \quad \mathrm{and} \quad y := 1.$$ # The state-transition Graph for MUX-SEM R Dewar and A Pnueli Following is the state-transition graph $G(\|\Theta\|, \rho)$ for MUX-SEM. This graph contains all the states accessible by MUX-SEM. Here and elsewhere, we denote by $\|p\|$ the set of states satisfying p. Thus, $\|\Theta\| = \{(N_1, N_2, 1)\}$ is the set of initial states of MUX-SEM. Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli ## **Model Checking Invariance Properties** We may use the following algorithm to verify that system \mathcal{D} satisfies the invariance property Inv(p). **Algorithm** MC-INV(\mathcal{D}, p) — verify that p is an invariant of system \mathcal{D} - Let $(S, E) := \text{CONSTRUCT-GRAPH}(\|\Theta\|, \rho)$ - Search in S for a state s violating the assertion p. - If no such state found, print "Property is Valid". - Otherwise, print the (shortest) path leading from some ⊖-state to the violating state s, indicating "Property is Invalid". Using this algorithm, we can ascertain that program MUX-SEM satisfies the invariance property of mutual exclusion, given by $Inv(\neg(C_1 \land C_2))$. Course G22,3033,007 Lecture 3 R. Dewar and A. Pnueli #### **Now to Response Properties** Next, we consider an algorithm for verifying response properties. A state s is defined to be pending if it is reachable by a q-free path from a state \tilde{s} which is an accessible p-state. We start by forming the state-transition graph G_{pend} which consists of all the pending states. This can be done by the following operations: ``` \begin{array}{lll} \rho_{\neg q} & := & \rho \wedge \neg q \wedge \neg q' \\ (S,E) & := & \text{construct-graph}(\|\Theta\|, \ \rho) \\ (S_{pend}, E_{pend}) & := & \text{construct-graph}(S \cap \|p \wedge \neg q\|, \ \rho_{\neg q}) \end{array} ``` For example, considering program MUX-SEM under the response property $T_1 \rightsquigarrow C_1$, we obtain the following graph as capturing all the pending states: A fair path in a state-transition graph is an infinite path which satisfies the two classes of fairness requirements. **Observation 1.** System \mathcal{D} violates the response property $p \rightsquigarrow q$ iff the graph G_{pend} contains a fair path. Thus, it is sufficient to check whether G_{pend} contains a fair path. Course G22 3033 007 Lecture 3 R. Dewar and A. Pnueli Course G22 3033 007 Lecture 3 R Dewar and A Pnueli ## From Fair Paths to Fair Subgraphs A subgraph $S\subseteq G_{pend}$ is called a strongly connected subgraph (SCS) if, for every two distinct states $s_1, s_2\in S$, there exists a path from s_1 to s_2 which only traverses states of S. For example, $\{\langle N_1,N_2,1\rangle,\langle T_1,N_2,1\rangle,\langle C_1,N_2,0\rangle\}$, and $\{\langle N_1,N_2,1\rangle\}$ are both SCS's of the state-transition graph of MUX-SEM. An SCS is called singular if it consists of a single state which is not connected to itself. A subgraph S is called just if it contains a J-state for every justice requirement $J \in \mathcal{J}$. The subgraph S is called compassionate if, for every compassion requirement $(p,q) \in \mathcal{C}$, S contains a g-state, or S contains no g-state. A subgraph S is fair if it is a non-singular strongly connected subgraph which is both just and compassionate. Let π be an infinite path in G_{pend} . We denote by $Inf(\pi)$ the set of states which appear infinitely many times in π . ## Traversing Cycles within SCSs **Observation 2.** Every strongly connected subgraph S contains a traversing cyclic path $\pi: s_0, s_1, \ldots, s_k = s_0$ which visits each state of S at least once. Proved by construction. Start by $\pi: s_0$, where $s_0 \in S$ is an arbitrary state in S. Let $last(\pi)$ denote the last state in the path π . While $S - set(\pi) \neq \emptyset$ do - Choose $s \in S set(\pi)$. - Let κ be an S-path connecting $last(\pi)$ to s. Guaranteed to exists due to the strong connectedness of S. - Append κ to the end of π Finally, extend π by a path connecting $last(\pi)$ to s_0 . ## A necessary and Sufficient Condition The following claim connects fair paths within G_{pend} with fair subgraphs of G_{pend} . **Claim 2.** The graph G_{pend} contains a fair path iff it contains a fair subgraph. #### Fair path ⇒ fair subgraph Let π be a fair path within G_{pend} . We will show that $S = Inf(\pi)$ is a fair subgraph. Note that there exists a position $j \geq 0$ such that every state that appears in a pi beyond position j belongs to $Inf(\pi)$ and, therefore appears infinitely many time beyond j. Let $s^a, s^b \in S$. Since both states appear infinitely many times beyond j, there exists positions j < k < m, such that $s_k = s^a$ and $s_m = s^b$. The sequence $s_k, s_{k+1}, \ldots, s_{m-1}, s_m$ is a path within G_{pend} which only visits states occurring at positions beyond j. Therefore, it is a path within S leading from s^a to s^b . This shows that $S = Inf(\pi)$ is a non-singular strongly connected subgraph of G_{pend} . Let J_i be one of the justice requirements. Since π is fair, it contains infinitely many J_i -states. In particular (since G_{pend} is finite) there must exists a particular J_i -state s^i which appears infinitely many times in π . Obviously $s^i \in Inf(\pi) = S$. Let (p_i,q_i) be one of the compassion requirements. Since π is fair, it either contains only finitely many p_i -states or contains infinitely many q_i -states. In the first case, $S = Inf(\pi)$ contains no p_i -states. In the second case, $S = Inf(\pi)$ contains at least one q_i -state. ## Fair Subgraph ⇒ Fair Path Course G22 3033 007 Lecture 3 Assume that $S \subseteq G_{pend}$ is a fair subgraph. Let κ be the cycle traversing all states of S. We denote by $\pi = \kappa^{\omega}$ the infinite path obtained by infinite repetition of the cycle κ . We claim that π is a fair path. For every justice requirement J_i , S contains some J_i -state s^i . Since κ passes through s^i at least once, $\pi = \kappa^{\omega}$ visits s^i infinitely many times. Similarly, let (p_i, q_i) be a compassion requirement. Either S contains no p_i -states at all, in which case, neither does π . Alternately, S contains some q_i -state s^i , in which case, $\pi = \kappa^{\omega}$ contains infinitely many copies of s^i . **Corollary 3.** A system \mathcal{D} violates the response property $p \rightsquigarrow q$ iff G_{pend} contains a fair subgraph. A subgraph S is called a maximal strongly connected subgraph (MSCS), if S is strongly connected and is not properly contained in any larger SCS. There exists an algorithm (due to Tarjan) , which decomposes a given graph into a list of MSCSS, $$G_{pend} = S_1 \cup S_2, \cup \cdots \cup S_k,$$ such that an edge can connect a state in S_i with a state in S_j only if $i \leq j$. -- success ## In Search of Fair Subgraphs The following recursive algorithm accepts as input an SCS S and returns a fair subgraph of S if one exists, or the empty set if S contains no fair subgraph. Here and elsewhere, we denote by $\|p\|$ the set of all p-states. **Algorithm** FAIR-SUB $(S:\mathsf{set}):\mathsf{set}$ — Find a fair subgraph within S - if S is singular then return \emptyset —— failure - if S is not just then return \emptyset —— failure - if S is compassionate then return S - ullet --S is just but not compassionate. Let $\widetilde{C} \subseteq \mathcal{C}$ be - the set of all compassion requirement (p_i, q_i) such - that S contains no q_i -states. - let $U = S \bigcup_{(p_i, q_i) \in \widetilde{C}} ||p_i||$. - Decompose U into MSCS's U_1, \ldots, U_k . - $\bullet \ \ \mathsf{let} \ V = \emptyset, \quad i = 1$ - while $V = \emptyset$ and $i \le k$ do - \blacksquare let $V = \text{FAIR-SUB}(U_i)$ - i := i + 1 - \bullet return V #### Example Reconsider the pending graph G_{pend} for the response property $T_1 \leadsto C_1$ over program MUX-SEM. Applying algorithm FAIR-SUB to this graph, we find that G_{pend} is non-singular and just. However, it is not compassionate w.r.t requirement $(T_1 \land y > 0, C_1)$. We therefore remove from the graph all states which satisfy $T_1 \wedge y > 0$. This leaves us with which is non-singular but unjust towards the justice requirement $\neg C_2$. We conclude that G_{pend} contains no fair subgraphs and, therefore, the property $T_1 \rightsquigarrow C_1$ is valid over MUX-SEM. ## **Model Checking Response Properties** Finally, we present the algorithm that checks whether a given FDS \mathcal{D} satisfies a response property $p \rightsquigarrow q$. This is achieved by the following algorithm which accepts as input an FDS \mathcal{D} and two assertions p and q, returning an empty set (graph) iff \mathcal{D} satisfies $p \rightsquigarrow q$. **Algorithm** MC-RESP(\mathcal{D} : FDS; p, q: assertion): **set** — Check whether FDS \mathcal{D} satisfies $p \rightsquigarrow q$ - Invoke algorithm CONSTRUCT-GRAPH to compute G_{pend} the pending graph for system \mathcal{D} . - Decompose G_{pend} into MSCS's S_1, \ldots, S_k . - let $V = \emptyset$, i = 1 - while $V = \emptyset$ and i < k do - \blacksquare let $V = \text{FAIR-SUB}(S_i)$ - i := i + 1 - \bullet return V #### Example As an example, consider the following FDS: The initial decomposition into MSCS's yields the partition $$\{s_0\}, \{s_1\}, \{s_2, s_3, s_4, s_5\}.$$ Applying FAIR-SUB to these subgraphs, we get ``` \begin{array}{ll} {\rm FAIR\text{-}SUB}(\{s_0\}) = \emptyset & {\rm because} \ \{s_0\} \ {\rm is \ singular} \\ {\rm FAIR\text{-}SUB}(\{s_1\}) = \emptyset & {\rm because} \ \{s_1\} \ {\rm is \ unjust} \end{array} ``` Applied to $\{s_2, s_3, s_4, s_5\}$, FAIR-SUB finds that $\{s_2, s_3, s_4, s_5\}$ is non-singular, just, and compassionate w.r.t C_1 . However, it is in-compassionate w.r.t C_2 . Therefore, we remove s_2 and proceed to apply FAIR-SUB to the decomposition of $\{s_3, s_4, s_5\}$, which is $\{\{s_3, s_4\}, \{s_5\}\}$. SCS $\{s_3, s_4\}$ is in-compassionate towards C_1 which causes us to remove s_3 . We are left with $\{s_4\}$ which is non-singular, just and compassionate towards both C_1 and C_2 . Therefore, the algorithm returns $\{s_4\}$ as a fair subgraph of the system.