Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Algorithms for Model Checking

Having demonstrated the benefits of formal verification, we proceed to describe
algorithms and methods by which such verification can be accomplished.

A run of D is a finite or infinite state sequence which satisfies the requirements
of initiality and consecution but is not necessarily fair.

A run segment is a finite state sequence which satisfies the requirement of
consecution.

A state s is D-accessible if it appears in some D-run.

System D is finite-state if it has only finitely many accessible states. An
SPL program with a fixed number of processes such that all of its variables are
declared to range over a finite domain (boolean or enumerated type) corresponds
to a finite-state FDS.

We start by presenting algorithms for the verification over finite-state systems
of the following two classes of properties:

e The invariance property nv(p), claiming that all D-accessible states satisfy
the assertion p.

e The response property p ~» g, claiming that every (D-accessible) p-state
must be followed by a g-state.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

The State-Transition Graph

A state-transition graph (S, E) is a directed graph whose nodes S are states
of some system D and whose edges I connect state s to state s iff 5 is a
pp-successor of s.

The following algorithm constructs the state-transition graph G/(Sp, p) which
contains all the states reachable from the set Sy by p-transitions.

Algorithm CONSTRUCT-GRAPH(Sy, p) —
construct the state-transition graph
G(So, p)
e Initially place in S all states that are in Sy.
e Repeat the following step until no new states or new edges can be

added to G.

m Step: for some s € S, let sy, ..., s be the p-successors of s.
Add to S all states among {s1, ..., si} which are not already
there and add to E edges connecting s to s1, ..., Sk.

e Return (S, E)

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Example: a Simpler MUX-SEM

Below, we present a simpler version of program MUX-SEM.

“@3

request y request y

y: natural initially y = 1

release y release y

The semaphore instructions request y and release y respectively stand for

(when y = 1doy:=0) and y:=1.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

The state-transition Graph for MUX-SEM

Following is the state-transition graph G(||©]|, p) for Mmux-sEm. This graph
contains all the states accessible by MUX-SEM. Here and elsewhere, we denote
by ||p|| the set of states satisfying p. Thus, ||©]| = {(N, N2, 1)} is the set
of initial states of MUX-SEM.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Model Checking Invariance Properties

We may use the following algorithm to verify that system D satisfies the
invariance property I'nv(p).

Algorithm Mc-INV(D, p) — verify that p is an invariant of system D
Let (S, F) := CONSTRUCT-GRAPH(||®]|, p)

e Search in S for a state s violating the assertion p.
e If no such state found, print “Property is Valid”.
[]

Otherwise, print the (shortest) path leading from some ©-state to
the violating state s, indicating “Property is Invalid”.

Using this algorithm, we can ascertain that program MUX-SEM satisfies the
invariance property of mutual exclusion, given by Inv(—(C1 A C3)).

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Now to Response Properties
Next, we consider an algorithm for verifying response properties. A state s is

defined to be pending if it is reachable by a g-free path from a state s which is
an accessible p-state.

We start by forming the state-transition graph G ,.,,s which consists of all the
pending states. This can be done by the following operations:

P—q = p A g A =q
(S, E) := CONSTRUCT-GRAPH(||O]|, p)
(Spends Epend) = CONSTRUCT-GRAPH(S N ||p A —ql|, p-q)

For example, considering program MUX-SEM under the response property 17 ~~
C'1, we obtain the following graph as capturing all the pending states:

A fair path in a state-transition graph is an infinite path which satisfies the two
classes of fairness requirements.

Observation 1. System D violates the response property p ~~ q iff the graph
G pena contains a fair path.

Thus, it is sufficient to check whether GG,.,q contains a fair path.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

From Fair Paths to Fair Subgraphs

A subgraph S C G4 is called a strongly connected subgraph (scs) if, for
every two distinct states s1, so € S, there exists a path from s; to s, which only
traverses states of S. For example, {{ N1, Na, 1), (T1, No, 1), (Cy, N3, 0)) },
and {(N7, No, 1)} are both scs's of the state-transition graph of MUX-SEM.
An scs is called singular if it consists of a single state which is not connected
to itself.

A subgraph S'is called just if it contains a .J-state for every justice requirement
J € J. The subgraph S is called compassionate if, for every compassion
requirement (p, q) € C, S contains a g-state, or .S contains no p-state.

A subgraph S is fair if it is a non-singular strongly connected subgraph which
is both just and compassionate.

Let 7 be an infinite path in G..0. We denote by Inf(m) the set of states
which appear infinitely many times in 7.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Traversing Cycles within SCSs

Observation 2. Every strongly connected subgraph S contains a traversing
cyclic path 7 : sq, s1, ..., Sk = So which visits each state of S at least once.

Proved by construction. Start by 7 : sg, where sy € S is an arbitrary state in
S. Let last(7) denote the last state in the path .

While S — set(mw) # 0 do

e Choose s € S — set(m).

e Let k be an S-path connecting last(m) to s. Guaranteed to exists due to
the strong connectedness of S.

e Append « to the end of

Finally, extend 7 by a path connecting last() to sg.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

A necessary and Sufficient Condition

The following claim connects fair paths within G, with fair subgraphs of
Gpcnd-

Claim 2. The graph G .4 contains a fair path iff it contains a a fair subgraph.

Fair path —- fair subgraph
Let w be a fair path within G .0 We will show that S = Inf(m) is a fair
subgraph.

Note that there exists a position 7 > 0 such that every state that appears
in a pi beyond position j belongs to Inf(7) and, therefore appears infinitely
many time beyond j.

Let s%, s® € S. Since both states appear infinitely many times beyond
j, there exists positions j < k < m, such that s, = s and s, = s’.
The sequence Sj, k41, - -, Sm—1, Sm is @ path within G, which only visits
states occurring at positions beyond j. Therefore, it is a path within S
leading from s to s”. This shows that S = Inf(7) is a non-singular strongly

connected subgraph of G4

Let J; be one of the justice requirements. Since 7 is fair, it contains
infinitely many .J;-states. In particular (since G4 is finite) there must exists
a particular J;-state s’ which appears infinitely many times in 7. Obviously
s € Inf(r) = S.

Let (pi, g;) be one of the compassion requirements. Since 7 is fair, it either
contains only finitely many p;-states or contains infinitely many g;-states. In the
first case, S = Inf () contains no p;-states. In the second case, S = Inf ()
contains at least one g;-state.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Fair Subgraph — Fair Path

Assume that S C Gnq is a fair subgraph. Let s be the cycle traversing
all states of S. We denote by m = k“ the infinite path obtained by infinite
repetition of the cycle .

We claim that 7 is a fair path. For every justice requirement .J;, S contains
some J;-state s’. Since k passes through s at least once, m = k“ visits s’
infinitely many times.

Similarly, let (p;, g;) be a compassion requirement. Either S contains no
Y

p;-states at all, in which case, neither does 7. Alternately, S contains some
gi-state s', in which case, m = k“ contains infinitely many copies of s". A

Corollary 3. A system D violates the response property p ~» q iff Gpena
contains a fair subgraph.

A subgraph S is called a maximal strongly connected subgraph (Mscs), if S is
strongly connected and is not properly contained in any larger scs.

There exists an algorithm (due to Tarjan) , which decomposes a given graph
into a list of Mscss,

Gpcnd =5 U 52, U ---u Sk,

such that an edge can connect a state in S; with a state in S only if i < j.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

In Search of Fair Subgraphs
The following recursive algorithm accepts as input an scs S and returns a fair

subgraph of S if one exists, or the empty set if S contains no fair subgraph.
Here and elsewhere, we denote by ||p|| the set of all p-states.

Algorithm FAIR-SUB(S : set) : set — Find a fair subgraph within .S

e if S is singular then return () — — failure
e if S is not just then return () — — failure
e if S is compassionate then return S — — success
e — — S is just but not compassionate. Let C C C be

— — the set of all compassion requirement (p;, g;) such
— — that S contains no g;-states.

oletU = 5— (] |lnil-
(p;2;)€C

e Decompose U into mscs's Uy, ..., Uy.
eletV=_0 i=1
e while V =0 and i < k do

m let V = FAIR-SUB(U;)

m =17+ 1
e return V

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Example

Reconsider the pending graph Gpend for the response property 17 ~» C'1 over
program MUX-SEM.

Applying algorithm FAIR-SUB to this graph, we find that G4 is non-singular
and just. However, it is not compassionate w.r.t requirement (77 A y > 0, Ch).

We therefore remove from the graph all states which satisfy 75 A y > 0.

This leaves us with

which is non-singular but unjust towards the justice requirement —Cs. We

conclude that Gpend contains no fair subgraphs and, therefore, the property

Ty ~ Cq is valid over MUX-SEM.

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Model Checking Response Properties

Finally, we present the algorithm that checks whether a given FDS D satisfies
a response property p ~» g. This is achieved by the following algorithm which
accepts as input an FDS D and two assertions p and g, returning an empty set
(graph) iff D satisfies p ~ gq.

Algorithm MC-RESP(D : FDS; p, q : assertion) : set — Check whether

FDS D satisfies p ~» g

e Invoke algorithm CONSTRUCT-GRAPH to compute (G ;.,q the pending
graph for system D.

e Decompose G eng into MsCs's Sy, ..., Sk.

eletV=0 i=1

e while V =0and : < k do
m let V' = FAIR-SUB(S;)
=341

e return V

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

Example

As an example, consider the following FDS:

T'iﬂ

-
(i)

with the fairness requirements:
)

Ci: (z=3,z=5
Cy: (z=2,z=1

The initial decomposition into MSCS's yields the partition

{so}, {s1}, {s2, s3, s4, s5}.

Applying FAIR-SUB to these subgraphs, we get

FAIR-SUB({so}) = 0 because {s¢} is singular
FAIR-SUB({s1}) = (0 because {s1} is unjust

Applied to {s2, s3, S4, S5}, FAIR-SUB finds that {ss, s3, s4, s5} is non-
singular, just, and compassionate w.r.t C';. However, it is in-compassionate
w.rt Cs.

Therefore, we remove s and proceed to apply FAIR-SUB to the decomposition
of {s3, 84, 85}, which is {{s3, sa}, {ss5}}.

SCs {s3, s4} is in-compassionate towards C which causes us to remove s;.
We are left with {s4} which is non-singular, just and compassionate towards
both C; and Cs. Therefore, the algorithm returns {s4} as a fair subgraph of
the system.

