## **Algorithms for Model Checking**

Having demonstrated the benefits of formal verification, we proceed to describe algorithms and methods by which such verification can be accomplished.

A run of  $\mathcal{D}$  is a finite or infinite state sequence which satisfies the requirements of initiality and consecution but is not necessarily fair.

A run segment is a finite state sequence which satisfies the requirement of consecution.

A state s is  $\mathcal{D}$ -accessible if it appears in some  $\mathcal{D}$ -run.

System  $\mathcal{D}$  is finite-state if it has only finitely many accessible states. An SPL program with a fixed number of processes such that all of its variables are declared to range over a finite domain (boolean or enumerated type) corresponds to a finite-state FDS.

We start by presenting algorithms for the verification over finite-state systems of the following two classes of properties:

- The invariance property Inv(p), claiming that all  $\mathcal{D}$ -accessible states satisfy the assertion p.
- The response property  $p \rightsquigarrow q$ , claiming that every ( $\mathcal{D}$ -accessible) p-state must be followed by a q-state.

## The State-Transition Graph

A state-transition graph (S,E) is a directed graph whose nodes S are states of some system  $\mathcal D$  and whose edges E connect state s to state s iff s is a  $\rho_{\mathcal D}$ -successor of s.

The following algorithm constructs the state-transition graph  $G(S_0, \rho)$  which contains all the states reachable from the set  $S_0$  by  $\rho$ -transitions.

#### Algorithm CONSTRUCT-GRAPH $(S_0, \rho)$ —

construct the state-transition graph

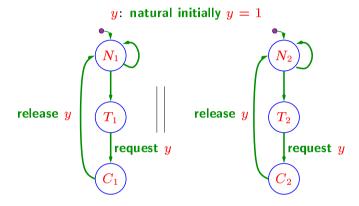
 $G(S_0, \rho)$ 

- Initially place in S all states that are in  $S_0$ .
- Repeat the following step until no new states or new edges can be added to G.
  - Step: for some  $s \in S$ , let  $s_1, \ldots, s_k$  be the  $\rho$ -successors of s. Add to S all states among  $\{s_1, \ldots, s_k\}$  which are not already there and add to E edges connecting s to  $s_1, \ldots, s_k$ .
- Return (S, E)

Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli Course G22.3033.007 Lecture 3

## **Example:** a **Simpler** MUX-SEM

Below, we present a simpler version of program MUX-SEM.



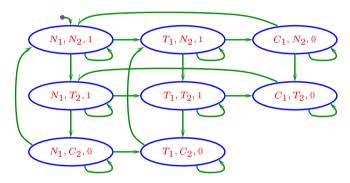
The semaphore instructions request y and release y respectively stand for

$$\langle \mathsf{when} \ y = 1 \ \mathsf{do} \ y := 0 \rangle \quad \mathrm{and} \quad y := 1.$$

# The state-transition Graph for MUX-SEM

R Dewar and A Pnueli

Following is the state-transition graph  $G(\|\Theta\|, \rho)$  for MUX-SEM. This graph contains all the states accessible by MUX-SEM. Here and elsewhere, we denote by  $\|p\|$  the set of states satisfying p. Thus,  $\|\Theta\| = \{(N_1, N_2, 1)\}$  is the set of initial states of MUX-SEM.



Course G22.3033.007 Lecture 3 R. Dewar and A. Pnueli

## **Model Checking Invariance Properties**

We may use the following algorithm to verify that system  $\mathcal{D}$  satisfies the invariance property Inv(p).

**Algorithm** MC-INV( $\mathcal{D}, p$ ) — verify that p is an invariant of system  $\mathcal{D}$ 

- Let  $(S, E) := \text{CONSTRUCT-GRAPH}(\|\Theta\|, \rho)$
- Search in S for a state s violating the assertion p.
- If no such state found, print "Property is Valid".
- Otherwise, print the (shortest) path leading from some ⊖-state to the violating state s, indicating "Property is Invalid".

Using this algorithm, we can ascertain that program MUX-SEM satisfies the invariance property of mutual exclusion, given by  $Inv(\neg(C_1 \land C_2))$ .

Course G22,3033,007 Lecture 3 R. Dewar and A. Pnueli

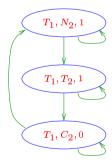
#### **Now to Response Properties**

Next, we consider an algorithm for verifying response properties. A state s is defined to be pending if it is reachable by a q-free path from a state  $\tilde{s}$  which is an accessible p-state.

We start by forming the state-transition graph  $G_{pend}$  which consists of all the pending states. This can be done by the following operations:

```
\begin{array}{lll} \rho_{\neg q} & := & \rho \wedge \neg q \wedge \neg q' \\ (S,E) & := & \text{construct-graph}(\|\Theta\|, \ \rho) \\ (S_{pend}, E_{pend}) & := & \text{construct-graph}(S \cap \|p \wedge \neg q\|, \ \rho_{\neg q}) \end{array}
```

For example, considering program MUX-SEM under the response property  $T_1 \rightsquigarrow C_1$ , we obtain the following graph as capturing all the pending states:



A fair path in a state-transition graph is an infinite path which satisfies the two classes of fairness requirements.

**Observation 1.** System  $\mathcal{D}$  violates the response property  $p \rightsquigarrow q$  iff the graph  $G_{pend}$  contains a fair path.

Thus, it is sufficient to check whether  $G_{pend}$  contains a fair path.

Course G22 3033 007 Lecture 3

R. Dewar and A. Pnueli

Course G22 3033 007 Lecture 3

R Dewar and A Pnueli

## From Fair Paths to Fair Subgraphs

A subgraph  $S\subseteq G_{pend}$  is called a strongly connected subgraph (SCS) if, for every two distinct states  $s_1, s_2\in S$ , there exists a path from  $s_1$  to  $s_2$  which only traverses states of S. For example,  $\{\langle N_1,N_2,1\rangle,\langle T_1,N_2,1\rangle,\langle C_1,N_2,0\rangle\}$ , and  $\{\langle N_1,N_2,1\rangle\}$  are both SCS's of the state-transition graph of MUX-SEM. An SCS is called singular if it consists of a single state which is not connected to itself.

A subgraph S is called just if it contains a J-state for every justice requirement  $J \in \mathcal{J}$ . The subgraph S is called compassionate if, for every compassion requirement  $(p,q) \in \mathcal{C}$ , S contains a g-state, or S contains no g-state.

A subgraph S is fair if it is a non-singular strongly connected subgraph which is both just and compassionate.

Let  $\pi$  be an infinite path in  $G_{pend}$ . We denote by  $Inf(\pi)$  the set of states which appear infinitely many times in  $\pi$ .

## Traversing Cycles within SCSs

**Observation 2.** Every strongly connected subgraph S contains a traversing cyclic path  $\pi: s_0, s_1, \ldots, s_k = s_0$  which visits each state of S at least once.

Proved by construction. Start by  $\pi: s_0$ , where  $s_0 \in S$  is an arbitrary state in S. Let  $last(\pi)$  denote the last state in the path  $\pi$ .

While  $S - set(\pi) \neq \emptyset$  do

- Choose  $s \in S set(\pi)$ .
- Let  $\kappa$  be an S-path connecting  $last(\pi)$  to s. Guaranteed to exists due to the strong connectedness of S.
- Append  $\kappa$  to the end of  $\pi$

Finally, extend  $\pi$  by a path connecting  $last(\pi)$  to  $s_0$ .

## A necessary and Sufficient Condition

The following claim connects fair paths within  $G_{pend}$  with fair subgraphs of  $G_{pend}$ .

**Claim 2.** The graph  $G_{pend}$  contains a fair path iff it contains a fair subgraph.

#### Fair path ⇒ fair subgraph

Let  $\pi$  be a fair path within  $G_{pend}$ . We will show that  $S = Inf(\pi)$  is a fair subgraph.

Note that there exists a position  $j \geq 0$  such that every state that appears in a pi beyond position j belongs to  $Inf(\pi)$  and, therefore appears infinitely many time beyond j.

Let  $s^a, s^b \in S$ . Since both states appear infinitely many times beyond j, there exists positions j < k < m, such that  $s_k = s^a$  and  $s_m = s^b$ . The sequence  $s_k, s_{k+1}, \ldots, s_{m-1}, s_m$  is a path within  $G_{pend}$  which only visits states occurring at positions beyond j. Therefore, it is a path within S leading from  $s^a$  to  $s^b$ . This shows that  $S = Inf(\pi)$  is a non-singular strongly connected subgraph of  $G_{pend}$ .

Let  $J_i$  be one of the justice requirements. Since  $\pi$  is fair, it contains infinitely many  $J_i$ -states. In particular (since  $G_{pend}$  is finite) there must exists a particular  $J_i$ -state  $s^i$  which appears infinitely many times in  $\pi$ . Obviously  $s^i \in Inf(\pi) = S$ .

Let  $(p_i,q_i)$  be one of the compassion requirements. Since  $\pi$  is fair, it either contains only finitely many  $p_i$ -states or contains infinitely many  $q_i$ -states. In the first case,  $S = Inf(\pi)$  contains no  $p_i$ -states. In the second case,  $S = Inf(\pi)$  contains at least one  $q_i$ -state.

## Fair Subgraph ⇒ Fair Path

Course G22 3033 007 Lecture 3

Assume that  $S \subseteq G_{pend}$  is a fair subgraph. Let  $\kappa$  be the cycle traversing all states of S. We denote by  $\pi = \kappa^{\omega}$  the infinite path obtained by infinite repetition of the cycle  $\kappa$ .

We claim that  $\pi$  is a fair path. For every justice requirement  $J_i$ , S contains some  $J_i$ -state  $s^i$ . Since  $\kappa$  passes through  $s^i$  at least once,  $\pi = \kappa^{\omega}$  visits  $s^i$  infinitely many times.

Similarly, let  $(p_i, q_i)$  be a compassion requirement. Either S contains no  $p_i$ -states at all, in which case, neither does  $\pi$ . Alternately, S contains some  $q_i$ -state  $s^i$ , in which case,  $\pi = \kappa^{\omega}$  contains infinitely many copies of  $s^i$ .

**Corollary 3.** A system  $\mathcal{D}$  violates the response property  $p \rightsquigarrow q$  iff  $G_{pend}$  contains a fair subgraph.

A subgraph S is called a maximal strongly connected subgraph (MSCS), if S is strongly connected and is not properly contained in any larger SCS.

There exists an algorithm (due to Tarjan) , which decomposes a given graph into a list of MSCSS,

$$G_{pend} = S_1 \cup S_2, \cup \cdots \cup S_k,$$

such that an edge can connect a state in  $S_i$  with a state in  $S_j$  only if  $i \leq j$ .

-- success

## In Search of Fair Subgraphs

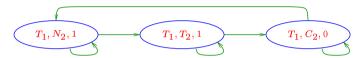
The following recursive algorithm accepts as input an SCS S and returns a fair subgraph of S if one exists, or the empty set if S contains no fair subgraph. Here and elsewhere, we denote by  $\|p\|$  the set of all p-states.

**Algorithm** FAIR-SUB $(S:\mathsf{set}):\mathsf{set}$  — Find a fair subgraph within S

- if S is singular then return  $\emptyset$  —— failure
- if S is not just then return  $\emptyset$  —— failure
- if S is compassionate then return S
- ullet --S is just but not compassionate. Let  $\widetilde{C} \subseteq \mathcal{C}$  be
- the set of all compassion requirement  $(p_i, q_i)$  such
- that S contains no  $q_i$ -states.
- let  $U = S \bigcup_{(p_i, q_i) \in \widetilde{C}} ||p_i||$ .
- Decompose U into MSCS's  $U_1, \ldots, U_k$ .
- $\bullet \ \ \mathsf{let} \ V = \emptyset, \quad i = 1$
- while  $V = \emptyset$  and  $i \le k$  do
  - $\blacksquare$  let  $V = \text{FAIR-SUB}(U_i)$
  - i := i + 1
- $\bullet$  return V

#### Example

Reconsider the pending graph  $G_{pend}$  for the response property  $T_1 \leadsto C_1$  over program MUX-SEM.



Applying algorithm FAIR-SUB to this graph, we find that  $G_{pend}$  is non-singular and just. However, it is not compassionate w.r.t requirement  $(T_1 \land y > 0, C_1)$ .

We therefore remove from the graph all states which satisfy  $T_1 \wedge y > 0$ . This leaves us with



which is non-singular but unjust towards the justice requirement  $\neg C_2$ . We conclude that  $G_{pend}$  contains no fair subgraphs and, therefore, the property  $T_1 \rightsquigarrow C_1$  is valid over MUX-SEM.

## **Model Checking Response Properties**

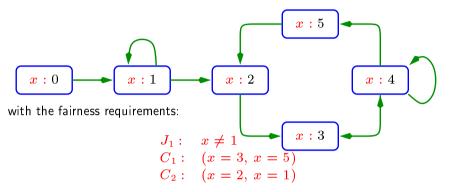
Finally, we present the algorithm that checks whether a given FDS  $\mathcal{D}$  satisfies a response property  $p \rightsquigarrow q$ . This is achieved by the following algorithm which accepts as input an FDS  $\mathcal{D}$  and two assertions p and q, returning an empty set (graph) iff  $\mathcal{D}$  satisfies  $p \rightsquigarrow q$ .

**Algorithm** MC-RESP( $\mathcal{D}$ : FDS; p, q: assertion): **set** — Check whether FDS  $\mathcal{D}$  satisfies  $p \rightsquigarrow q$ 

- Invoke algorithm CONSTRUCT-GRAPH to compute  $G_{pend}$  the pending graph for system  $\mathcal{D}$ .
- Decompose  $G_{pend}$  into MSCS's  $S_1, \ldots, S_k$ .
- let  $V = \emptyset$ , i = 1
- while  $V = \emptyset$  and i < k do
  - $\blacksquare$  let  $V = \text{FAIR-SUB}(S_i)$
  - i := i + 1
- $\bullet$  return V

#### Example

As an example, consider the following FDS:



The initial decomposition into MSCS's yields the partition

$$\{s_0\}, \{s_1\}, \{s_2, s_3, s_4, s_5\}.$$

Applying FAIR-SUB to these subgraphs, we get

```
\begin{array}{ll} {\rm FAIR\text{-}SUB}(\{s_0\}) = \emptyset & {\rm because} \ \{s_0\} \ {\rm is \ singular} \\ {\rm FAIR\text{-}SUB}(\{s_1\}) = \emptyset & {\rm because} \ \{s_1\} \ {\rm is \ unjust} \end{array}
```

Applied to  $\{s_2, s_3, s_4, s_5\}$ , FAIR-SUB finds that  $\{s_2, s_3, s_4, s_5\}$  is non-singular, just, and compassionate w.r.t  $C_1$ . However, it is in-compassionate w.r.t  $C_2$ .

Therefore, we remove  $s_2$  and proceed to apply FAIR-SUB to the decomposition of  $\{s_3, s_4, s_5\}$ , which is  $\{\{s_3, s_4\}, \{s_5\}\}$ .

SCS  $\{s_3, s_4\}$  is in-compassionate towards  $C_1$  which causes us to remove  $s_3$ . We are left with  $\{s_4\}$  which is non-singular, just and compassionate towards both  $C_1$  and  $C_2$ . Therefore, the algorithm returns  $\{s_4\}$  as a fair subgraph of the system.