Course G22.3033.007 Lecture 5 R. Dewar and A. Pnueli

BDD’s

We start with a binary decision diagram. For example, following is a decision
diagram (tree) for the formula (z1 = y1) A (22 = y2):

/ 1 1

;I ’l 1
l'@
l * L !

I BEE DOC

In general, it requires an exponential number of nodes.

Course G22.3033.007 Lecture 5

Optimize

e lIdentify identical subgraphs.

e Remove redundant tests.

Yielding:

/@

s
'd

4
7
4
N
N
A
4
7

4

e

&

e
4
7

AY
/
/7
/7
/7
/7
7
'l
\

R. Dewar and A. Pnueli

Course G22.3033.007 Lecture 5 R. Dewar and A. Pnueli

Definitions

A binary decision diagram BDD is a rooted, directed acyclic graph with

e One or two nodes of out-degree zero labeled O or 1, and

e A set of variable nodes u of out-degree 2. The two outgoing edges are given
by the functions low(w) and high(w). A variable var(w) is associated with
each node.

A BDD is ordered (OBDD) if the variables respect a given linear order
r1 < g < - -+ < x, on all paths through the graph. An OBDD is reduced
(ROBDD) if it satisfies:

e Uniqueness — no two distinct nodes are the roots of isomorphic subgraphs.
e No redundant tests — low(u) # high(w) for all nodes u in the graph.

For simplicity, we will refer to ROBDD simply as BDDs.

Course G22.3033.007 Lecture 5 R. Dewar and A. Pnueli

Canonicity

Claim 4. For every function f : Bool™ — Bool and variable ordering
1 < o < - -+ < xp, there exists exactly one BDD representing this function.

The complexity of BDD representation is very sensitive to the variable
ordering. For example, the BDD representation of (z1 = y1) A (22 = y2)
under the variable ordering 1 < z9 < y1 < ys is:

Course G22.3033.007 Lecture 5

R. Dewar and A. Pnueli

Implementation of BDD Packages

Types and Variables:

node
var_num
node_rec
T
H
Operations:
init(T)

u = new(T, i, £, h)

= naturals
= naturals
record of
var 1 var_num;
low, high : mnode
end_record

node — node_rec
node_rec — node U { L}

Initialize 7" to contain only 0 and 1
allocate a new node u, such that
T(u) = (3,2, h)

initialize H to L

H is the inverse of T'. Thatis, H(T(u)) = u, for every u € dom(T).

We will write var(u), low(w), high(w), and H(%, £, h) as abbreviations for
T (u).var, T(u).low, T(w).high, and H({(i,£, h)).

Course G22.3033.007 Lecture 5

Internal Representation

R. Dewar and A. Pnueli

T:u— (i,4,h)

| var | low | high |

U
0
1
2
3
4
5
6
7

NN W R B

GUO b= N O+~

O WO

Course G22.3033.007 Lecture 5

R. Dewar and A. Pnueli

Making or Retrieving a node_id

Function MK (i : var_num; ¢, h : node) : node

A A

— — Make or retrieve a node with attributes (7, £, h)
if £ = h then return ¢
if H(i,4, h) # L then return H(%, ¢, h)
u = new(s, £, h)
H(i,2,h) :==u
return u

Course G22.3033.007 Lecture 5 R. Dewar and A. Pnueli

Applying a Binary Boolean Operation to
two BDD’s

Let op : Bool X Bool — Bool be a binary boolean operation. The following
function uses the auxiliary dynamic array G : node X node — node.

Function Apply (op ; w1, us : node) : node
— — Apply op to BDD’s u; and us
G:=1
function App(uy, us : node) : node =
if G[uy, us] # L then return Gluy, us]
if ug € {0,].} N ug € {0,].} then u := op(ul, u2)
else if var(u;) = var(us) then
u := MK (var(uy),App(low(u1), low(usg)),
App(high(uy), high(us)))
else if var(ui) < var(us) then
u := MK (var(uy), App(low(uy), us), App(high(uy), us))
else (xvar(ui) > var(ug)*)
u := MK (var(uz), App(u1, low(usz)), App(u1, high(uz)))
Glui, ug] := u
return u
end App
return App(u1, uz)

Course G22.3033.007 Lecture 5

Restriction (Substitution)

R. Dewar and A. Pnueli

Function REST (u : node; j : var_num; b : Bool) : node
— — Substitute b for x; in BDD u
G:=1
function res(u : node) : node =
if G[u] # L then return G[u]
if var(u) > j then r := u
else if var(u) < j then
r := MK(var(u), res(low(u)), res(high(u)))
else (xvar(u) = j*) if b = 0 then r := low(u)
else r := high(u)
Glu] :==r
return r

end res

return res(u)

Restriction is the same as substitution. We denote by ¢[z — b] the result of
substituting b for x in assertion .

Course G22.3033.007 Lecture 5 R. Dewar and A. Pnueli

Quantification
Existential quantification can be computed, using the equivalence
dz:t ~ tlzx = 0] V tlz— 1]
Universal quantification can be computed dually:

Ve :t ~ tlz— 0] A tlz— 1]

Course G22.3033.007 Lecture 5 R. Dewar and A. Pnueli

Application to Symbolic Model Checking

Let V be the state variables for the FDs D. Taking a vocabulary U = V UV,
we represent the state formulas ©, .J for each J € 7, p;, q;, for each
(pi, q;) € C, and the sMc-INV symbolic working variables new and old as
BDD's over U which are independent of V.

The transition relation p is represented as a BDD over U which may be fully
dependent on both V and V.

All the boolean operations used in the SMC-INV algorithm can be implemented
by the Apply function. Negation can be computed by =t = ¢ @ 1, where @ is
sum modulo 2.

To check for equivalence such as old = new we compute ¢t := (old <+
new) and then verify that the result is the singleton BDD 1.

The existential pre-condition transformer is computed by
poty = 3IV:ip(V,V)Ap(V)
Priming an assertion 1) is performed by

prime(yp) =3V : (V) A V =V

