Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

The Eventual Predecessor Predicate Transformer

The immediate predecessor transformer p ¢) can be iterated to yield the
eventual predecessor transformer:

pPoY = b VpoypVpo(poy)Vopo(po(poy)) VvV

Obviously, p*¢ 1) characterizes all the states from which it is possible to reach
a 1-state by O or more p-steps.

A state s is called feasible if it initiates a fair run.

Let D be an FDs. We denote by D, the FDs obtained from D by replacing
the initial condition by the trivial assertion 7' (true). The state-transition
graph G'p,, represents all the possible D-states, including some which are not
reachable by D.

Course G22.3033.007 Lecture 6

R. Dewar and A. Pnueli

A Symbolic Algorithm for Model Checking Response

Algorithm SET-FEASIBLE (D) : assertion — Calculate the set of Dp-states
initiating a fair D-run, using symbolic operations

o

© o

10.

new, old assertion
old := 0
new =1
while (new # old) do
begin
old := new
new = new A (p, ¢ new)

— — Only retain states which have a successor within new
for each J € J do
new = (new A py)* & (new A J)
— — Only retain states with a new-path leading to a J-state
for each (p, q) € C do
o new A —p
rew = [Vo (new A pp)* o (new A q)]
— — Retain states violating p or having a new-path leading to a g-stat
end
return(p; & new)

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Correctness of the Algorithm

Claim 5. Algorithm SET-FEASIBLE terminates, with state s satisfying
SET-FEASIBLE(D) iff there exists a Gp,-path leading from s to a fair subgraph
of GDT'

The proof is partitioned into three parts:

1. The Algorithm terminates: We define an ordering relation on assertions
by letting

p=q << |pl Clal-
Denote by newf the assertion which is the (symbolic) value of variable new
at the jth visit to line ¢ (before executing line 7).

Since all operations applied to variable new are of the form new A FE or
a disjunction of such expressions, it is easy to see that lines 5, 7, and 9 only
remove states from new. Therefore, we have that new ™ <new’ = old}™
forall j =1,2,....

Since G, is finite, the algorithm must terminate.

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Correctness of the Algorithm: Completeness

Next, we prove that Algorithm SET-FEASIBLE is complete. Namely, if S'is a fair
subgraph of G'p,, and s is a state leading to 5, then s € ||[SET-FEASIBLE(D)||.

To do so, we show that S C ||newsg|| from which the claim of completeness
follows.

The above inclusion follows by induction on the number of steps performed
by the algorithm, where the induction basis is provided by

1
S C Gop = |1 = |Inews]],

and the induction step is supported by the fact that, due to S being a fair
subgraph, S C ||new|| implies the following:

5 C llnew A (pp & new)|
S C [[(new A pp)* & (new A J)|
new A —p
SC [\/ (new A pp)* o (new A q)]

For every J € T
| Forevery (p,q) €C

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Algorithm Correctness: Soundness

-.3cm Finally, we show that the algorithm is sound. Namely, if s €
||[SET-FEASIBLE(D)|| then there exists S, a fair subgraph of G'p,,, and a path
leading from s to S.

When the algorithm terminates, we know that

P1. Every s € ||newio| has a successor s’ € |[newql|.

P2. Every s € ||newg|| initiates a ||newio||-path leading to
a J-state, for every J € 7.

P3. Every s € ||[newg]| initiates a ||newn||-path leading to
a g-state or satisfies —p, for every (p, q) € C.

Assume that s € ||SET-FEASIBLE(D)||. Line 10 implies that s is connected
by a path 7 to a ||new;jql|-state. Repeat the following successive extensions
of 7 ad-infinitum, denoting the last state of 7 by sy:

1. Extend 7 by a ||newsg||-successor of s,, guaranteed by P1.

2. For every J € J, extend 7 by a ||newigl|-path leading to a J-state,
guaranteed by P2.

3. For every (p, q) € C, if there exists a ||newngl||-path 7’ connecting s; to
a g-state, then extend 7 by ©’. Otherwise, do not extend 7. When done,
go back to 1..

Can show that S = Inf(7) is an s-reachable fair subgraph.

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Relation to Previous Work

Model checking of LTL with full fairness was proposed first in [LP85] and
independently in [EL85]. The algorithms were applied to explicit state
elaboration of the state-space, and relied on the construction of an LTL
tableau and its composition with the system.

Can be interpreted also as algorithms for checking the emptiness of a Street

Automaton [LP85], [VW86].

[LP85] also contained fix-point expressions for the calculation of E;Gr
under weak fairness. These were later implemented in most symbolic model
checkers, e.g., [BCMDH92].

Efficient symbolic model checking of LTL has been proposed in [CGH94],
based on the construction of additional modules, serving as LTL testers.
Only weak fairness was considered. Our approach improves on [CGH94] in
the direct treatment of compassion and not relying on a reduction into CTL.
All previous treatments of compassion suggested adding it as an antecedent
to the LTL property we wish to verify.

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Model Checking Response Properties

We denote by D, the ¥FDS obtained from ¥DS D by replacing the transition
relation p,, by the transition relation

p-q: g A pp A g

this transition relation connects state s with state s iff 5 is a D-successor of s,
and neither state satifies q.

Algorithm sMC-RESP (D, p, q) : assertion — Check that FDs D satisfies
p ~» g, using symbolic operations
cycles, pending : assertion
1. cycles := SET-FEASIBLE(D_,)
— — Compute all states initiating a fair —g-run.
2. pending :=p A cycles
— — All p-states initiating a fair —g-run.
3. return ©, A (ppo pending)
— — All initial states leading to p-states initiating a fair —g-run.

Claim 6. Algorithm SMC-RESP returns a vacuous (unsatisfiable, = 0)
assertion iff D satisfies p ~ q.

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Model Checking Accessibility

Accessibility for process P; of MUX-SEM can be specified by the response
property
T ~ C

Invoking SET-FEASIBLE(MUX-SEM- ¢,), we get:

next:l,) : 1
nea:tg: -Ci = N; Vv T
nemtg : Ny v (Th AN y=0)

newfé =nextip: N1 V (Th AN y=0 A =Cy)
Computing pending, we get pending =Ty N y =0 A —=Cy.
Intersecting with the reachable states, we get O (false).

We conclude that MUX-SEM has the property of accessibility.

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

The TLV System

Recall the schematic presentation of the sSMC-INV algorithm:

Algorithm sMc-INV (D, p) : assertion — Check that FDS D satisfies Inv(p),
using symbolic operations

new, old : assertion
1. old:=0
2. new := —p
3. while (new # old) do
begin
4. old := new
5. new := new V (p, ¢ new)
end

6. return @D A new

Programming it in TLV-BASIC

Func smc-inv(p);
Local old := 1;
Local new := 0;
While (!(old = new))
Let 0ld := new;
Let new := old | pred(total,old);
If (new & _i)
Let o0ld := new;
End -- If
End -- end while
Return new & _i;
End -- Func smc-inv(p);

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

A Response MC Algorithm which Provides
Counter-Examples

Algorithm sMC-RESP (D, p, q) — Model Check p ~» g providing counter-
examples
cycles, rpend : assertion

cycles := SET-FEASIBLE(D-,) — — All states initiating a fair —g-run

rpend :=p A cycles N (O, ¢ pp) — — All reachable pending states

if rpend = 0 then [print “Property is Valid”; return]

print “Property is Invalid. Counter-Example Follows”

R := cycles A pp A cycles’ — — Restrict to transitions within cycles

(position, psize) := (1,0)

gpath(© ., rpend, pp, prefir, psize) — — A path from ©_, to rpend

s = prefiz[psize] — — The closest reachable pending state

while (s ¢ R*) A= (R* ¢ s) # 0do
s:=sat((s 0 R*) A—=(R" ¢ s))

gpath(prefiz|psize], s, R, prefiz, psize)

print “Prefix of Counter-Example:”

— — Search for a terminal MSCS
— — Extend path to s

array_print(prefiz, psize — 1, position) — — Print ctr-example prefix
(psize, period[l], period[2]) := (2, s, sat(s ¢ R)) — — Init. period
for each J € J do

gpath(period|psize], J, R, period, psize) — — Visit next justice set

for each (p, q) € C do
if (period[psize] © R*) Aq # O then
gpath(period[psize], q, R, period, psize) — — Visit next compassion

gpath(period[psize], s, R, period, psize) — — Close cycle
print “Repeating Period”
array_print(period, psize — 1, position) — — Print ctr-example period

Course G22.3033.007 Lecture 6 R. Dewar and A. Pnueli

Tlv-Basic Implementation of gpath

Proc ngpath(source, destination, R, &arr, &asize);
Local new := destination;
Local old := 0; Local pos := 1;
While (!(old = new))
Let 0ld := new;

Let bpath[1] := new;

If (null(new & source))
Let new := old | pred(R,o0ld);
If (!(old = new))
Let pos := pos + 1;
Let bpath[pos] := new & !old;
End -- If (!(old = new))
End -- If (null(new & source))
End -- While (!(old = new))
If (new & source)
If (asize = 0)
Let asize := asize + 1;
Let arr[asize] := sat(new & source);
End -- If (asize = 0)
While (pos)

Let pos := pos - 1;

If (pos)
Let arr[asize+1] := sat(succ(R,arr[asize]) & bpath[pos]);
Let asize := asize + 1;

End -- If (pos)
End -- While (pos)
End -- If (new & source)
End -- Proc ngpath(source, destination, R, &arr);

Course G22.3033.007 Lecture 6

Hlustrate

destination = bpath|[1]

bpath|[3]

asize]

R. Dewar and A. Pnueli

source

