Course G22.3033.007 Lecture 7

R. Dewar and A. Pnueli

Observations and Equivalence of Systems

Let $U\subseteq V$ be a subset of state variables and s be a V-state. We denote by $s\downarrow_U$ the U-state, called the projection of s on U, which is obtained by restricting the interpretation of variables to the variables in U.

For a V-state sequence

$$\sigma: s_0, s_1, \ldots,$$

we denote by $\sigma \Downarrow_U$ the projected U-state sequence

$$\sigma \Downarrow_U : \quad s_0 \Downarrow_U, s_1 \Downarrow_U, \ldots$$

An \mathcal{O} -state sequence Ω is called an observation of the FDS \mathcal{D} if $\Omega = \sigma \downarrow_{\mathcal{O}}$ for some σ , a computation of σ . We denote by $Obs(\mathcal{D})$ the set of observations of FDS \mathcal{D} .

Systems \mathcal{D}_1 and \mathcal{D}_2 are said to be equivalent, denoted $\mathcal{D}_1 \sim \mathcal{D}_2$, if their sets of abservations are identical. That is,

$$\mathit{Obs}(\mathcal{D}_1) = \mathit{Obs}(\mathcal{D}_2)$$

Course G22.3033.007 Lecture 7

Feasibility and Viability of Systems

R Dewar and A Pnueli

An FDS \mathcal{D} is said to be feasible if \mathcal{D} has at least one computation.

A finite or infinite sequence of states is defined to be a run of an FDS \mathcal{D} if it satisfies the requirements of initiality and consecution but not necessarily any of the fairness requirements.

The FDS \mathcal{D} is defined to be viable if any finite run of \mathcal{D} can be extended to a computation of \mathcal{D} .

Claim 7. Every FDS derived from an SPL program is viable.

Note that if \mathcal{D} is a viable system, such that its initial condition $\Theta_{\mathcal{D}}$ is satisfiable, then \mathcal{D} is feasible.

Course G22 3033 007 Lecture 7

R Dewar and A Pnueli

Operations on FDS's: Asynchronous Parallel Composition

Systems \mathcal{D}_1 and \mathcal{D}_2 are compatible if $V_1 \cap V_2 = \mathcal{O}_1 \cap \mathcal{O}_2$.

The asynchronous parallel composition of the compatible systems \mathcal{D}_1 and \mathcal{D}_2 , denoted by $\mathcal{D}_1 \parallel \mathcal{D}_2$, is given by $\mathcal{D} = \langle V, \mathcal{O}, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$, where

The predicate pres(U) stands for the assertion U' = U, implying that all the variables in U are preserved by the transition.

Asynchronous parallel composition represents the interleaving-based concurrency which is the assumed concurrency in shared-variables models.

Claim 8.
$$\mathcal{D}(P_1 \parallel P_2) \sim \mathcal{D}(P_1) \parallel \mathcal{D}(P_2)$$

Course G22.3033.007 Lecture 7

R Dewar and A Pnueli

Synchronous Parallel Composition

The synchronous parallel composition of the compatible systems \mathcal{D}_1 and \mathcal{D}_2 , denoted by $\mathcal{D}_1 \parallel \mid \mathcal{D}_2$, is given by the FDS $\mathcal{D} = \langle V, \mathcal{O}, \Theta, \rho, \mathcal{J}, \mathcal{C} \rangle$, where

Synchronous parallel composition is useful for the modeling and verification of hardware designs. It is also useful for augmenting systems with auxiliary monitors.

Claim 9. Let σ be an infinite $(V_1 \cup V_2)$ -state sequence. Sequence σ is a computation of $\mathcal{D}_1 \parallel \mid \mathcal{D}_2$ iff $(\sigma \Downarrow_{V_1} \text{ is a computation of } \mathcal{D}_1 \text{ and } \sigma \Downarrow_{V_2} \text{ is a computation of } \mathcal{D}_2)$.

Requirement Specification Language: Temporal Logic

Assume an underlying (first-order) assertion language. The predicate $at_{-}\ell_{i}$, abbreviates the formula $\pi_{i} = \ell_{i}$, where ℓ_{i} is a location within process P_{i} .

A temporal formula is constructed out of state formulas (assertions) to which we apply the boolean operators \neg and \lor and various temporal operators, such as:

A model for a temporal formula p is an infinite sequence of states $\sigma: s_0, s_1, ...,$ where each state s_i provides an interpretation for the variables of p.

Semantics of LTL

Given a model σ , we define the notion of a temporal formula p holding at a position $j \ge 0$ in σ , denoted by $(\sigma, j) \models p$:

- For an assertion p, $(\sigma, j) \models p \iff s_j \models p$ That is, we evaluate p locally on state s_j .
- $(\sigma, j) \models \neg p$ \iff $(\sigma, j) \not\models p$
- $(\sigma, j) \models p \lor q \iff (\sigma, j) \models p \text{ or } (\sigma, j) \models q$
- $(\sigma,j) \models \square p \iff (\sigma,k) \models p \text{ for all } k \geq j$
- $(\sigma,j) \models igotimes p \iff (\sigma,k) \models p ext{ for some } k \geq j$

If $(\sigma, 0) \models p$ we say that p holds over σ and write $\sigma \models p$. p is satisfiable if it holds over some model. p is (temporally) valid if it holds over all models.

Formulas p and q are equivalent, denoted $p \sim q$, if $p \leftrightarrow q$ is valid. They are called congruent, denoted $p \approx q$, if \square $(p \leftrightarrow q)$ is valid. If $p \approx q$ then p can be replaced by q in any context.

We write $p \Rightarrow q$ as an abbreviation for $\square (p \rightarrow q)$.

R Dewar and A Pnueli

nueli

Reading Exercises

Following are some temporal formulas φ and what they say about a sequence $\sigma: s_0, s_1, \ldots$ such that $\sigma \models \varphi$:

- $\square p$ All states within σ satisfy p. Previously, we denoted this property by Inv(p).
- $p \rightarrow \langle q | \text{if } p \text{ holds at } s_0, \text{ then } q \text{ holds at } s_j \text{ for some } j \geq 0.$
- \square $(p \to \bigcirc q)$ Every p is followed by a q. Also written as $p \Rightarrow \bigcirc q$. Previously, we denoted this property by $p \rightsquigarrow q$.
- $\square \diamondsuit q$ The sequence σ contains infinitely many q's.
- \bigcirc \square q All but finitely many states in σ satisfy q. Property q eventually stabilizes.

Course G22.3033.007 Lecture 7

R Dewar and A Pnueli

Temporal Specification of Properties

Formula φ is \mathcal{D} -valid, denoted $\mathcal{D} \models \varphi$, if all computations of \mathcal{D} satisfy φ . Such a formula specifies a property of \mathcal{D} .

Following is a temporal specification of the main properties of program MUX-SEM.

• Mutual Exclusion – No computation of the program can include a state in which process P_1 is at ℓ_3 while P_2 is at m_3 . Specifiable by the formula

$$\square \neg (at_{-}\ell_3 \land at_{-}m_3)$$

• Accessibility for P_1 – Whenever process P_1 is at ℓ_2 , it shall eventually reach it's critical section at ℓ_3 . Specifiable by the formula

$$\square (at_{-}\ell_{2} \rightarrow \Diamond at_{-}\ell_{3})$$

R Dewar and A Pnueli

Course G22 3033 007 Lecture 7

R Dewar and A Pnueli

Full Temporal Logic – The Basic Operators

Their semantics:

- $(\sigma, j) \models \bigcirc p$ \iff $(\sigma, j + 1) \models p$ $(\sigma, j) \models p \ \mathcal{U} \ q$ \iff for some $k \ge j, (\sigma, k) \models q$, and for every i such that j < i < k, $(\sigma, i) \models p$
- $(\sigma,j) \models \bigcirc p \iff j > 0 \text{ and } (\sigma,j-1) \models p$
- $(\sigma, j) \models p \mathcal{S} q \iff \text{for some } k < j, (\sigma, k) \models q$ and for every i such that j > i > k, $(\sigma, i) \models p$

All other temporal operators can be defined in terms of these 4 as follows:

Expressive Completeness

Every (propositional) temporal formula φ can be translated into a first-order logic with monadic predicates over the naturals ordered by < (1st-order theory of linear order).

For example, the 1st-order translation of $p \Rightarrow \bigcirc q$ is

$$\forall t_1 \geq 0 : (p(t_1) \rightarrow \exists t_2 \geq t_1 : (q(t_2)))$$

Can every 1st-order formula be translated into temporal logic?

W. Kamp [Kamp68] has shown that the answer is negative if we only allow and in our temporal formulas. But then proceeded to show that:

Claim 10. Every 1st-order formula can be translated into a temporal formula in the logic $\mathcal{L}(\mathcal{U}_{>}, \mathcal{S}_{>})$.

[GPSS81] has shown that

Claim 11. Every 1st-order formula can be translated into a temporal formula in the logic $\mathcal{L}(\bigcirc, \mathcal{U})$.

This also shows that the past operators add no expressive power.

Classification of Formulas/Properties

A formula of the form $\square p$ for some past formula p is called a safety formula.

A formula of the form $\square \diamondsuit p$ for some past formula p is called a response formula.

An equivalent characterization is the form $p\Rightarrow \bigcirc q$. The equivalence is justified by

$$\square (p \to \diamondsuit q) \qquad \sim \qquad \square \diamondsuit ((\neg p) \mathcal{B} q)$$

Both formulas state that either there are infinitely many q's, or there there are no p's, or there is a last q-position, beyond which there are no further p's.

A property is classified as a safety/response property if it can be specified by a safety/response formula.

Every temporal formula is equivalent to a conjunction of a reactivity formulas, i.e.

$$\bigwedge_{i=1}^k \left(\square \diamondsuit p_i \lor \diamondsuit \square q_i \right)$$