Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Model-Checking General Temporal Formulas

Given an FDS D and a temporal formula ¢, we wish to check that ¢ is valid
over D. This can be done according to the following recipe:

1. Construct the temporal tester 7" . This is an FDS whose observations are
all the sequences satisfying —¢.

2. Form the synchronous composition D, = D ||| T-p. This is an FDS
whose computations correspond to computations of D which satisfy -,
i.e., violate ¢.

3. Check that DC is infeasible, i.e., have no computations.

Conclude that ¢ is D-valid.

5. In case D, is feasible, then any computation of D, is a counter-example,
i.e., a computation of D which violates .

The correctness of this prescription follows from

Claim 12. The formula ¢ is D-valid iff the ¥Ds D ||| T o has no
computations.

It only remains to show how to check feasibility of an FDS and how to construct
the tester T.

Course G22.3033.007 Lecture 8

Checking the Feasibility of an FDs

R. Dewar and A. Pnueli

The following algorithm checks whether the FDs D is feasible.

Algorithm Ck-FEAS (D) — Check whether system D is feasible
feas . assertion
1. feas := SET-FEASIBLE(D) — — All states initiating a fair run
2. return ©, A feas ~— — All initial states initiating a computation

This algorithm returns a O result iff FDS D is infeasible. In case it returns a
non-empty result, we can use it to extract and print a computation of D in a
way similar to Algorithm SMC-RESP.

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Temporal Testers

The missing element in the plan for reducing the verification problem D |= 1)
to checking feasibility of the composed system D ||| Tester—,, is a recipe for
constructing the temporal tester 7.

Given a temporal formula ¢, the tester Tip is an FDS whose observations
are all the sequences satisfying . We describe a construction of such a tester,
called the tableau construction, for building such an FDS.

Transforming to positive form As a first step, we transform ¢ to a formula in
a positive form, which means that negations are only applied to state-formulas.
This transformation is achieved by repeated application of the following rewrite
rules until the formula is in positive form:

-Or
-®p

——p — D
-(p ANq) — PV —g
=(p Vg — —pA-g
-Op — O
-op — O-»
-Op — O-p
—(pU q) — (7)) W (-p A —q)
“PWgq) — (79U (-p A —q)
-Ep — O -p
-Sp — EH-»
—(p S q) — (=q) B(=p A —q)
—(p B q) — (=9) S (=p A —q)
—
—

-p
O-»

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Tableau Construction

The tableau T is a directed graph whose nodes are labeled by sets of formulas
which are either sub-formulas of ¢, or a formula of the form Op where p € ©.

Initially, we place in T" an initial node labeled by .

20

Next, alternately apply Steps 1 and 2 until they no longer affect the tableau:

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Step 1: Local Expansions
Repeatedly apply the following expansion rules until no further change:

e Conjunctive expansions

~a N
I'pAg N [I',pAg, p, q]

> 4 > 4

N N
A [F-/I:Ip-/paoljp]

P 4 P 4

e Disjunctive expansions

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

'pWaq

o [p,O(qu)][q]

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Statecharts Conventions

In the preceding rules, we made use of several statecharts conventions. Thus,
the rewrite rule:

- IE

is an abbreviation for

N
l[I',pVag, p]
N
I', pVag 2V -
> 4 -
[I'pVa,q]
P 4

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Step 2: Next Expansion

Pick a node n to which the next expansion has not been applied yet. Assume
that its label is of the form

P1, -5 Pms Oqla"'aoqka

where the principal operator of the formulas p1, ..., p., is other than O

Add to the tableau 7" a new node n' labeled by q1, ..., gk, if such a node

does not already exists in 7. In any case draw an edge connecting n to n'.

This will lead to the following structure within 7:

::[pla"'apm,;oqh"'aoqk]—’[q1, - .., gk]

Whenever in the construction we encounter a propositionally inconsistent node,
i.e. a node whose label contains the formulas p and —p, such a node must be
removed from the tableau.

Also, whenever we detect two nodes n; and n; which have been fully locally
expanded, whose labels contain the same propositional formulas and the same
O-formulas, then n; and n; can be merged (identified).

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Summing it Up

When the above construction terminates, it defines for us the set of reachable
states and the succession relation within the ¥DS Tp. Assume that the
reachable states are sg, ..., s, and let £ C [0..m] X [0..m] be the set of
pairs (i, j) such that there exists an edge in the tableau connecting s; to s,.
Let Ao, ..., A\, be the labels of the nodes (states) sg, ..., sm, respectively.
Let IT be the set of propositions which appear in the formula ¢.

For a node n;, we denote by prop; the conjunction of the non-temporal
formulas within X;. Note that prop; does not necessarily assign values to all
the propositions in II.

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

The FDS Tgp

We are now ready to define the FDs Tip.

e For the state variables we take V' = {x : [0..m]} U II. Thus, we take all
the propositions appearing in ¢ plus a control variable x which ranges over
[0..m].

e O = II. Only the propositions appearing in © are observable.

e O: \/ (prop; AN k = 1i). Thus, the initial states are all the states s;
pexr;
which include ¢ in their label.
e p: \/ (prop; N kK =1 A prop;. A k' = 7). Thus, the possible
(i,j)eE
transitions are determined by the edges connecting nodes within the tableau,
and every state s; imposes the valuation prop;.

e For every sub-formula O p € ¢, J includes the requirement
Jop: (k=1 v \/ (k=1
PEA; Opg,\j
For every sub-formula p U/ ¢ € ¢, J includes the requirement

quq:V(“:i)V \/ (k= J).

qeEN; PUGE X

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Example: A Tester for [p

Constructing the tableau for [] p, we obtain

0»[Op, », OOp]

which leads to the following FDs 7',

V =0 : p:boolean
O :
/\p'

(Sl

p:
J =C:

Course G22.3033.007 Lecture 8

A Tester for O p

The tableau for <> pis:

)

Leading to the FDs T’ !

SENOECES

{k :
p

[0..2]; p : boolean}

k=0V k=1Ap

k=0A(k'=0V kK =1AYp)
']Op:

k € {1,2}

oo

\Y

R. Dewar and A. Pnueli

ke {1,2}AK =2

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

A Tester for > O p
The tableau for <> Opis:

<O0Op
[O:OOEIp] [1:0p, p, OOp

__

Observing that A1 and A agree on the set of propositional formulas ({p}) and

the set of O—formulas ({OI:I p}), we identify ns with n;. This leads to
the tableau:

[2:Op, p, OOp

s

<0Ovp i
[O:O<>|:|p] [1:0p, », OOp

)

Whose corresponding ¥Ds 7' 4, is:

{k : [0..1]; p : boolean}

p

k=0V k=1Ap

k=0AK' =0 V kK€e{0,1}Ar'=1Ap
Jomp: k=1

QS @0 <

Course G22.3033.007 Lecture 8

A Tester for > (p A O —q)

R. Dewar and A. Pnueli

For our final example, we construct a tester for the formula <> (p A O —9).
This formula is of interest because it is the negation of the formula

Ok —a).

The tableau for this formula is given by

O A O-g)
0:O O (» A O-9)

L [p A I:Iﬂq,p-,l:lﬂq]
' -¢, OO ~¢

o N— J y

2: [0 -q, ~¢, OO ~q

Leading to the FDSs:

{k :[0..2]; p,q : boolean}
{p, ¢}
k=0V k=1ApA g

k=0 AN =0V kK=1Ap A=q")
[V k€ {1,2} Ak ' =2A ¢]
JO(I)/\ O-g) ' K € {1,2}

G 00T

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Verifying Mutual Exclusion for MUX-SEM

We wish to verify that program MUX-SEM satisfies the property of mutual
exclusion which can be specified by the formula

P D ﬁ(C’l N CQ)

The negation of this formula is given by

w =Y 0(01/\02)

Following the tableau construction, we obtain the tester 7T}, /,sion given by:

V:
O
O :

{rk :[0..2]; C1,Cs : boolean}
{C1, C2}
k=0 V :‘"{/:1/\0]/\02

k=0 ANK =0V K=1AC]ACy)
[v keE{l,2} AR =2]
JO(ClACQ) VNS {17 2}

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

MUX-SEM Satisfies Mutual Exclusion

The state-transition graph for

is given by

MUX-SEM ||| Tinc/usion

Applying Algorithm FAIR-SUB to this graph yields the empty set since the
justice requirement k € {1, 2} is not satisfied by any state.

We conclude:

MUX-SEM = [=(C1 A Cs)

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Verifying Accessibility for MUX-SEM

The property of accessibility for process P, of program MUX-SEM can be
expressed by the temporal formula

P O O Ty
It's negation is given by

QO = —m_p : O D Tg
A tester T'—acc for this formula is 7" n,,, given by:

{k :[0..1]; T% : boolean}

T

k=0V k=1AT1T,

k=0AK' =0 V ke{0,1}AK =1AT,
JOnptK,Zl

G 00 <

Course G22.3033.007 Lecture 8

MUX-SEM Satisfies Accessibility

R. Dewar and A. Pnueli

The state-transition graph for
MUX-SEM ||| T=acc
is given by

scs Uy is rejected because it is unjust towards < = 1.

scs Usy is incompassionate towards (7> Ay = 1, C3). Eliminating the
(Ty Ay = 1)-states, this leaves us with (C'y, T5, 0, 1) which is unjust towards
C1.

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Temporal Testers for Formulas with Past

The previous incremental construction works only for future formulas. For
formulas with past operators, we need a different construction, which we
describe next.

Let ¢ be a formula in positive form with vocabulary U for which we wish to
construct a temporal tester. A formula p € ¢ is called a principally temporal
sub-formula if the main operator of p is temporal. Thus, the principally

temporal sub-formulas of [] (p — <> q) are O (p — O q) and <>q.
Let 7 () denote the set of principally temporal sub-formulas of .

Define a set of variables: X¢ @ {z, | p € T(¥)}

For example, Xn(p_, O = {fEn(p_> Oq)» qu}

We introduce a statification transformation y, mapping sub-formulas of ¢
into state formulas over U U X, as follows:

2 for v a state formula
_ x(p) V x(q) forep=p V q
x() = x(p) A x(q) forp=p A ¢
Ty for i € T (¥)

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Construction Continued

For example, application of x to the sub-formulas of [(p — <>q)
(equivalently [(=p Vv <> q)) yields

[wee | x(® |

OG- | zaps og

p— O q P T,

p p

0 q Toq

q q

The tester Tip is given by
Ty = (DO |l D[¢]> U,

peT ()

We proceed to show how to construct D[] for the various temporal formulas,
recalling that the basic temporal operators for positive form formulas are

{07 u’ W’ @’ @7 S’ B}

Course G22.3033.007 Lecture 8

DIOpl: DlpU q], and Dp W ¢]

The Fpns D[] for) = Op is given by

R. Dewar and A. Pnueli

V=0 : UUX¢

e : 1
p : zy=x(p)
J=C : 0

The Fpns D[] for i = p U q is given by

V:O : UUXd,

® 1

poozy = x(@ VvV (x(p) A zy)
J : —xy V x(q)

C 0

The ¥ps D[] for ¢ = p W q is given by

V=0 . UUqu,
e : 1
potozy = x(@) V (x(p) A zy)

J=C : 0

Course G22.3033.007 Lecture 8

D[@y] and D@]
The Fns D[] for ¢ = @p is given by

V=0 : UUX¢

© : —xy
p : wy=x(p)
J=C : 0

Thus, the initial value of x,, for ¢ = @p is always 0.

The #ps D[] for b = @ p is given by

V:O : UUX¢
© : zy
p + zy=x(p)
J=C : 0

Thus, the initial value of z,; for 1) = @p is always 1.

R. Dewar and A. Pnueli

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Dip S q|, Dlp B ¢|, and Dy Example: Tq(,-, o)
The FDs D[] for p = p S q is given by Taking U = {p, q, o, T¢ }, the tester T, o, is given by:
V=0 : UUXy (V=0=U, ©:xg, p:1, J:0, C:0) |
© : zy=x(q)
p o oxy = x(@) vV (x(p) A zy) (V=0=U, ©:1, p:zage (p—xy)Aad,
T=C : 0 J -0, c:0) Vo
o (V=0=U, ©:1, p:zy < qV Ty,
The ¥ps D[] for b = p B q is given by i T iz Vg, c:0))

V=0 : UUX¢

© : zy=x(q) V x(p)
poooxy = x(@ VvV (x(p) A zy)
J=C :

Thus, D[p S ¢q] and D[p B q] differ in their initial values which are x(g) and
x(p) V x(q), respectively.

Finally, Dy is given by

V=0 UU X
© x(¥)
P 1
J=cC 0

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Explanation and Motivation for the Construction

Consider first the simple case of a formula ¢ = <> q, where ¢ is a state
formula. The partial tester for this formula according to the prescribed recipe is

V=0 : {q¢zo}

e 1

DI q] p o ozy = (qV zg)
J Ty Vg
C 0

We can prove the following:

Claim 13. Llet o : sg, s1,... be a computation ofD[O q] and j > 0 be
a position. If s;[xz¢] = 1 then (o,) |= 0 q.

Proof: Assume that s;[x¢] = 1. Applying p to position j, we obtain that
either s; |= q or sjii[xe] = 1. Continuing in this manner to positions
j+1,7+2,..., weobtain that either there exists a k > 0 such that s = p
or si[re] = 1 and s; [~ g for all @ > j. Since the second case violates the
justice requirement -4, V g, we are guaranteed that s, [= ¢ for some k > 0

which, by the definition of <> , implies (s, j) = <> q. d

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Satisfaction Implies Computation of D[{> ¢

Claim 13 showed that, within a computation, <> q holds whenever Ty = 1.
The following claim establishes the other direction, namely, that a sequence in
which z, = 1 at precisely the positions which satisfy <> q is a computation

of D[ql.

Claim 14. Let o : sg, s1,... be a {q, x4 }-sequence in which s;[xe] = 1
iff (o,7) = <> q. Then, o is a computation ofD[<> q].

Proof: Since the formula 0 q satisfies the expansion axiom

<>q<=>q N O<>q,

it is obvious that x, satisfies the transition relation zo = q V x’o It only
remains to show that x4 also satisfies the justice requirement —z4 V gq.

We consider two cases. First assume that o contains infinitely many g-
positions (states satisfying ¢). Since 0 q holds at each of these positions, we
are guaranteed of having infinitely many positions at which x4 = 1.

In the other case, there are only finitely many g-positions. In this case, there
exists a 7 > 0 such that there is no g-position beyond (or at) j. It follows that
<> q is false at all positions beyond j and, therefore, there are infinitely many
positions at which x4 = 0. d

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

A Tester for 1 r

Next, consider the case of a formula [] » where, again, we assume that r
is a state formula. Since [~ = W 0, we construct the partial tester for
1 W r. This leads to the following partial tester:

V=0 : {r,zg}
IO] : © 1

za = (r A zg')

p
J=C : 0
which satisfies

Claim 15. Let o : sg, s1, ... be a computation of D[] r] and j > 0 be a
position. If s;[zg] = 1 then (o, j) = O r.

Proof: Assume that s;[zg] = 1. Applying p to positions j,j + 1,..., we
obtain that s;[zg] = s;[r] = 1, for all i > j. By the definition of [, it
follows that (s, 7) = [r. Jd

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Satisfaction Implies Computation of D[] 7]

The other direction of Claim 15 states that a sequence in which xgp = 1 at
precisely the positions which satisfy [] 7 is a computation of D[[] r].

Claim 16. Let o : sg, s1,... be an {r, zg}-sequence in which s;[zg] = 1
iff (o,7) = O r. Then, o is a computation of D[[] r].

Proof: Since the formula [] satisfies the expansion axiom

Or<r /\Ol:lr,

it is obvious that g satisfies the transition relation zg = A zg’.

Course G22.3033.007 Lecture 8

A Tester for O (p — q)

R. Dewar and A. Pnueli

Next, let us consider the formula @ = [] (p — 0 q). The partial tester
proposed by our recipe is equivalent to

(V=0 : {p,q zo ze})
O : 1
)) T = q V .’IZ/O
PGPl g p [/\ rn = (p—xg) /\Inl] }
j : (—|ZIZO Vv q)
L C : (B J

Note that p — x4 ~ x(p — 0 q). The correctness of this constructions
is stated by

Claim 17. Let o : sg, s1, ... be a computation of D[] (p — <> q)] and
j > 0 be a position. If s;[xg] = 1 then (o,5) = (p — 0 q).

Proof: Since p — x4 is a state formula, Claim 15 implies that s;[zg] = 1
implies (. j) = [(p — x¢). By Claim 13, (0, k) = <> ¢ holds at all
positions k& > j in which s;[z4] = 1. Combining these two facts, we get that

s;lza] = 1 implies (o, 7) = O (p = a)- a

Course G22.3033.007 Lecture 8

Satisfaction Implies Computation of D[[J (p — > q)]

R. Dewar and A. Pnueli

The other direction of Claim 17 states that a sequence in which zg = 1
at precisely the positions which satisfy [] (p — <> q) is a computation of

DO (p — < a)l.

Claim 18. Let o : s0,51,... be a {p,q,zn, v¢ }-sequence in which

silzal = 1iff (0, 5) = O (p = < @) and slze] = 1iff(0,5) =D q-
Then, o is a computation of D[] (p — <> q)].

Proof: Due to the expansion formulas of 0 and [and the fact that
<> q holds precisely when x, = 1, the two clauses of the transition relation
obviously hold at all positions. By an argument similar to that of Claim 14, we
can show that the justice requirement =z, V ¢ also holds. It follows that o

is a computation of D[] (p — <> q)]. o

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Adding D,

Finally, let us add the component Dy, which imposes the initial condition
x(®). For the case of v = [] (p — <> q), this leads to the following full
temporal tester:

(V=0 : {p, Q7xﬂax0})
©® : zp
Ty = q V a:i>
T, : :
Op—0e) ° P A za = (p— o) A zd ¢ ip.a}
J (7w Vo)
\ C : @ 7/

The correctness of this construction is stated by the following claim.

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

Claim 19. The {p,q}-sequence o : sg,s1,... is an observation of

Tapes oq ffo = O (» = O a).

Proof: First, assume that o : sq, s1, ... is an observation of Th(,_, &4 It
follows that there exists a {p, ¢, xn, ¢ }-sequence & : 5q, 51, . . ., such that
o is a computation of Thy(,,_, ¢, and oy, ;1 = o. Since the initial condition
of Ta(p—s ¢q) is zao, it follows that so[zg] = 1. Clearly, T, &, differs

from D((p — <> q)) only in its initial condition which implies the initial
condition of D([] (p — <> q)). Consequently, & is also a computation
of DO (p — Oq)) and, by Claim 17, Sg[zp] = 1 implies (5,0) =
O (p— 0 q), from which we can conclude o =[] (p — <> q).

In the other direction, assume that o : sg, si,... is a {p, ¢}-sequence

satisfying [] (p — <> q). We extend o into a {p, q, zn, x¢ }-sequence
o : 8p,81,... by assigning to each state s; an evaluation for g, z4 as

follows:
ol=1 = ©iHEq
=1 <= (o)EOr—-<0
By Claim 18, & is a computation of the partial tester D[] (p — <> Q)]

Since o (and hence &) satisfy [] (p — <> q), it follows that sp[zg] = 1
and therefore 7 is also a computation of Th(,, ¢,). It follows that o is an
observation of Ty

xr
xr

p— Oq)-

Course G22.3033.007 Lecture 8

R. Dewar and A. Pnueli

State-Transition Diagram for T,)

P 4 T T

P 4 T T

P, 4. 7TE, T

P, 4, Tg Ty

P, ma, T, T

PG, T, Ty

--ofle - -

PG, T, Ty

