Course G22,3033,007 Lecture 8 R. Dewar and A. Pnueli

## **Model-Checking General Temporal Formulas**

Given an FDS  $\mathcal{D}$  and a temporal formula  $\varphi$ , we wish to check that  $\varphi$  is valid over  $\mathcal{D}$ . This can be done according to the following recipe:

- 1. Construct the temporal tester  $T_{\neg \varphi}$ . This is an FDS whose observations are all the sequences satisfying  $\neg \varphi$ .
- 2. Form the synchronous composition  $\mathcal{D}_C = \mathcal{D} \parallel T_{\neg \varphi}$ . This is an FDS whose computations correspond to computations of  $\mathcal{D}$  which satisfy  $\neg \varphi$ , i.e., violate  $\varphi$ .
- 3. Check that  $\mathcal{D}_{C}$  is infeasible, i.e., have no computations.
- 4. Conclude that  $\varphi$  is  $\mathcal{D}$ -valid.
- 5. In case  $\mathcal{D}_C$  is feasible, then any computation of  $\mathcal{D}_C$  is a counter-example, i.e., a computation of  $\mathcal{D}$  which violates  $\varphi$ .

The correctness of this prescription follows from

**Claim 12**. The formula  $\varphi$  is  $\mathcal{D}$ -valid iff the FDS  $\mathcal{D}$  |||  $T_{\neg \varphi}$  has no computations.

It only remains to show how to check feasibility of an FDS and how to construct the tester  $T_{\psi}$ .

Course G22,3033,007 Lecture 8 R. Dewar and A. Pnueli

## **Checking the Feasibility of an FDS**

The following algorithm checks whether the FDS  $\mathcal{D}$  is feasible.

**Algorithm** CK-FEAS  $(\mathcal{D})$  — Check whether system  $\mathcal{D}$  is feasible

*feas* : assertion

- 1.  $feas := SET-FEASIBLE(\mathcal{D})$  All states initiating a fair run
- 2. **return**  $\Theta_{\mathcal{D}} \wedge feas$  All initial states initiating a computation

This algorithm returns a 0 result iff FDS  $\mathcal{D}$  is infeasible. In case it returns a non-empty result, we can use it to extract and print a computation of  $\mathcal{D}$  in a way similar to Algorithm SMC-RESP.

## **Temporal Testers**

The missing element in the plan for reducing the verification problem  $\mathcal{D} \models \psi$  to checking feasibility of the composed system  $\mathcal{D} \parallel \mid Tester_{\neg \psi}$ , is a recipe for constructing the temporal tester  $T_{\neg \psi}$ .

Given a temporal formula  $\varphi$ , the tester  $T_{\varphi}$  is an FDS whose observations are all the sequences satisfying  $\varphi$ . We describe a construction of such a tester, called the tableau construction, for building such an FDS.

**Transforming to positive form** As a first step, we transform  $\varphi$  to a formula in a positive form, which means that negations are only applied to state-formulas. This transformation is achieved by repeated application of the following rewrite rules until the formula is in positive form:

#### **Tableau Construction**

The tableau T is a directed graph whose nodes are labeled by sets of formulas which are either sub-formulas of  $\varphi$ , or a formula of the form  $\bigcap p$  where  $p \in \varphi$ .

Initially, we place in T an initial node labeled by  $\varphi$ .



Next, alternately apply Steps 1 and 2 until they no longer affect the tableau:

## **Step 1: Local Expansions**

Repeatedly apply the following expansion rules until no further change:

• Conjunctive expansions



• Disjunctive expansions





R Dewar and A Pnueli

### Statecharts Conventions

In the preceding rules, we made use of several statecharts conventions. Thus, the rewrite rule:



Course G22.3033.007 Lecture 8

## Step 2: Next Expansion

R Dewar and A Pnueli

Pick a node n to which the next expansion has not been applied yet. Assume that its label is of the form

$$p_1, \ldots, p_m; \bigcirc q_1, \ldots, \bigcirc q_k,$$

where the principal operator of the formulas  $p_1, \ldots, p_m$  is other than  $\bigcirc$ 

Add to the tableau T a new node n' labeled by  $q_1, \ldots, q_k$ , if such a node does not already exists in T. In any case draw an edge connecting n to n'.

This will lead to the following structure within T:



Whenever in the construction we encounter a propositionally inconsistent node, i.e. a node whose label contains the formulas p and  $\neg p$ , such a node must be removed from the tableau.

Also, whenever we detect two nodes  $n_i$  and  $n_j$  which have been fully locally expanded, whose labels contain the same propositional formulas and the same  $\bigcirc$ -formulas, then  $n_i$  and  $n_j$  can be merged (identified).

## **Summing it Up**

When the above construction terminates, it defines for us the set of reachable states and the succession relation within the FDS  $T_{\varphi}$ . Assume that the reachable states are  $s_0,\ldots,s_m$  and let  $E\subseteq [0..m]\times [0..m]$  be the set of pairs (i,j) such that there exists an edge in the tableau connecting  $s_i$  to  $s_j$ . Let  $\lambda_0,\ldots,\lambda_m$  be the labels of the nodes (states)  $s_0,\ldots,s_m$ , respectively. Let  $\Pi$  be the set of propositions which appear in the formula  $\varphi$ .

For a node  $n_i$ , we denote by  $prop_i$  the conjunction of the non-temporal formulas within  $\lambda_i$ . Note that  $prop_i$  does not necessarily assign values to all the propositions in  $\Pi$ .

## The FDS $T_{\varphi}$

We are now ready to define the FDS  $T_{\varphi}$ .

- For the state variables we take  $V = \{\kappa : [0..m]\} \cup \Pi$ . Thus, we take all the propositions appearing in  $\varphi$  plus a control variable  $\kappa$  which ranges over [0..m].
- $\mathcal{O} = \Pi$ . Only the propositions appearing in  $\varphi$  are observable.
- $\Theta: \bigvee_{\varphi \in \lambda_i} (prop_i \land \kappa = i)$ . Thus, the initial states are all the states  $s_i$  which include  $\varphi$  in their label.
- $\rho: \bigvee_{(i,j)\in E} (prop_i \land \kappa = i \land prop_j' \land \kappa' = j)$ . Thus, the possible transitions are determined by the edges connecting nodes within the tableau, and every state  $s_i$  imposes the valuation  $prop_i$ .
- For every sub-formula  $\bigcirc p \in \varphi$ ,  $\mathcal{J}$  includes the requirement

$$J_{\diamond p}: \bigvee_{p \in \lambda_i} (\kappa = i) \lor \bigvee_{\diamond p \notin \lambda_j} (\kappa = j).$$

For every sub-formula  $p \ \mathcal{U} \ q \in \varphi$ ,  $\mathcal{J}$  includes the requirement  $J_{p\mathcal{U}q}: \bigvee_{\sigma \in \mathcal{I}} (\kappa = i) \ \lor \ \bigvee_{\sigma \in \mathcal{I}} (\kappa = j)$ .

R. Dewar and A. Pnueli

Course G22.3033.007 Lecture 8

R. Dewar and A. Pnueli

## Example: A Tester for $\square p$

Constructing the tableau for  $\square p$ , we obtain



which leads to the following FDS  $T_{\square_p}$ :

$$egin{array}{lll} V = \mathcal{O}: & p: \mbox{boolean} \ \Theta: & p \ 
ho: & p \ 
ho: & p \ 
ho: & p' \ \mathcal{J} = \mathcal{C}: & \emptyset \end{array}$$

## A Tester for $\diamondsuit p$

The tableau for  $\bigcirc p$  is:



Leading to the FDS  $T_{\diamond p}$ :

```
\begin{array}{lll} \textbf{\textit{V}}: & \{\kappa:[0..2]; \ p: \textbf{boolean}\}\\ \textbf{\textit{O}}: & p\\ \boldsymbol{\Theta}: & \kappa=0 \ \lor \ \kappa=1 \land p\\ \boldsymbol{\rho}: & \kappa=0 \land (\kappa'=0 \ \lor \ \kappa'=1 \land p') & \lor & \kappa \in \{1,2\} \land \kappa'=2\\ \textbf{\textit{J}}: & \textbf{\textit{J}}_{\diamondsuit p}: \kappa \in \{1,2\} \end{array}
```

R Dewar and A Pnueli

# **A** Tester for $\diamondsuit$ $(p \land \Box \neg q)$

R Dewar and A Pnueli

A Tester for  $\diamondsuit \square p$ 

The tableau for  $\bigcirc$   $\square$  p is:



Observing that  $\lambda_1$  and  $\lambda_2$  agree on the set of propositional formulas  $(\{p\})$  and the set of O-formulas  $(\{\bigcirc \square p\})$ , we identify  $n_2$  with  $n_1$ . This leads to the tableau:



Whose corresponding FDS  $T \diamond \square_n$  is:

$$\begin{array}{ll} V: & \{\kappa:[0..1]; \ p: {\sf boolean}\}\\ \mathcal{O}: & p\\ \Theta: & \kappa=0 \ \lor \ \kappa=1 \land p \end{array}$$

 $\begin{array}{lll} \rho: & \kappa = 0 \wedge \kappa' = 0 & \tilde{\mathsf{V}} & \kappa \in \{0,1\} \wedge \kappa' = 1 \wedge p' \\ \mathcal{J}: & J_{\diamondsuit \square_p}: \kappa = 1 \end{array}$ 

For our final example, we construct a tester for the formula  $(p \land \Box \neg q)$ . This formula is of interest because it is the negation of the formula  $\Box (p \to \bigcirc q)$ .

The tableau for this formula is given by



Leading to the FDS:

Course G22.3033.007 Lecture 8

$$\begin{array}{lll} \mathbf{V}: & \{\kappa:[0..2]; \; p,q: \mathbf{boolean}\} \\ \mathcal{O}: & \{p,\,q\} \\ \Theta: & \kappa=0 \; \vee \; \kappa=1 \wedge p \wedge \neg q \\ \\ \rho: & \left( \begin{array}{c} \kappa=0 & \wedge \; (\kappa'=0 \; \vee \; \kappa'=1 \wedge p' \wedge \neg q') \\ \vee & \kappa\in\{1,2\} \wedge \; \kappa'=2 \wedge \neg q' \end{array} \right) \\ \mathcal{J}: & J_{\diamondsuit(p \wedge \square \neg q)}: \kappa\in\{1,2\} \end{array}$$

R Dewar and A Pnueli

## **Verifying Mutual Exclusion for MUX-SEM**

We wish to verify that program  $\underline{MUX}\text{-}\underline{SEM}$  satisfies the property of mutual exclusion which can be specified by the formula

$$\psi: \quad \square \neg (C_1 \land C_2)$$

The negation of this formula is given by

$$\varphi = \neg \psi : \quad \Diamond (C_1 \land C_2)$$

Following the tableau construction, we obtain the tester  $T_{inclusion}$  given by:

```
\begin{array}{ll} \boldsymbol{V}: & \{\kappa:[0..2];\ C_1,C_2: \textbf{boolean}\}\\ \mathcal{O}: & \{C_1,\ C_2\}\\ \boldsymbol{\Theta}: & \kappa=0\ \lor\ \kappa=1 \land C_1 \land C_2\\ \\ \boldsymbol{\rho}: & \left\{ \begin{array}{ccc} \kappa=0 & \land\ (\kappa'=0\ \lor\ \kappa'=1 \land C_1' \land C_2')\\ \lor\ \kappa\in\{1,2\} \land \kappa'=2 \end{array} \right. \end{array} \right)
```

Course G22.3033.007 Lecture 8 R. Dewar and A. Pnueli

#### MUX-SEM Satisfies Mutual Exclusion

The state-transition graph for

MUX-SEM 
$$\parallel \mid T_{inclusion}$$

is given by



Applying Algorithm FAIR-SUB to this graph yields the empty set since the justice requirement  $\kappa \in \{1, 2\}$  is not satisfied by any state.

We conclude:

$$\text{MUX-SEM} \models \square \neg (C_1 \land C_2)$$

R Dewar and A Pnueli

## **MUX-SEM Satisfies Accessibility**

R Dewar and A Pnueli

## **Verifying Accessibility for MUX-SEM**

The property of accessibility for process  $P_2$  of program  ${
m MUX\text{-}SEM}$  can be expressed by the temporal formula

$$\psi: \square \lozenge \neg T_2$$

It's negation is given by

$$\varphi = \neg \psi : \bigcirc \square T_2$$

A tester  $T_{\neg acc}$  for this formula is  $T_{\lozenge \square_p}$ , given by:

 $V: \{\kappa : [0..1]; T_2 : \mathsf{boolean}\}$ 

 $\mathcal{O}: T_2$ 

 $\Theta: \quad \kappa = 0 \quad \lor \quad \kappa = 1 \land T_2$ 

 $\label{eq:rho_eps_problem} {\pmb \rho}: \quad \kappa = 0 \wedge \kappa' = 0 \quad \ \ \forall \quad \ \kappa \in \{0,1\} \wedge \kappa' = 1 \wedge T_2'$ 

 $\mathcal{J}: J_{\Diamond \square_p}: \kappa = 1$ 

The  $\ensuremath{\mathsf{state}\text{-}\mathsf{transition}}$  graph for

MUX-SEM  $\parallel \mid T \neg acc$ 

is given by

Course G22.3033.007 Lecture 8



SCS  $U_1$  is rejected because it is unjust towards  $\kappa=1$ .

SCS  $U_2$  is incompassionate towards  $(T_2 \wedge y = 1, C_2)$ . Eliminating the  $(T_2 \wedge y = 1)$ -states, this leaves us with  $\langle C_1, T_2, 0, 1 \rangle$  which is unjust towards  $C_1$ .

## **Temporal Testers for Formulas with Past**

The previous incremental construction works only for future formulas. For formulas with past operators, we need a different construction, which we describe next.

Let  $\varphi$  be a formula in positive form with vocabulary U for which we wish to construct a temporal tester. A formula  $p \in \varphi$  is called a principally temporal sub-formula if the main operator of p is temporal. Thus, the principally temporal sub-formulas of  $\square$   $(p \to \bigcirc q)$  are  $\square$   $(p \to \bigcirc q)$  and  $\bigcirc q$ . Let  $\mathcal{T}(\varphi)$  denote the set of principally temporal sub-formulas of  $\varphi$ .

Define a set of variables:  $X_{\varphi}: \{x_p \mid p \in \mathcal{T}(\varphi)\}$ 

For example,  $X_{\square(p\to \lozenge q)} = \{x_{\square(p\to \lozenge q)}, x_{\lozenge q}\}$ 

We introduce a statification transformation  $\chi$ , mapping sub-formulas of  $\varphi$  into state formulas over  $U \cup X_{\varphi}$ , as follows:

$$\chi(\psi) = \left\{ egin{array}{ll} \psi & ext{for } \psi ext{ a state formula} \ \chi(p) ee \chi(q) & ext{for } \psi = p ee q \ \chi(p) \wedge \chi(q) & ext{for } \psi = p \wedge q \ x_{\psi} & ext{for } \psi \in \mathcal{T}(arphi) \end{array} 
ight.$$

#### **Construction Continued**

For example, application of  $\chi$  to the sub-formulas of  $\square$   $(p \to \bigcirc q)$  (equivalently  $\square$   $(\neg p \lor \bigcirc q)$ ) yields

| $\psi \in arphi$                     | $\chi(\psi)$                       |
|--------------------------------------|------------------------------------|
| $\square \ (p \to \diamondsuit \ q)$ | $x_{\square(p 	o \diamondsuit q)}$ |
| $p \to \bigcirc q$                   | $p \to x_{\diamond q}$             |
| p                                    | p                                  |
| $\Diamond q$                         | $x_{\diamond q}$                   |
| q                                    | q                                  |

The tester  $T\varphi$  is given by

$$Tarphi \quad = \quad igg(\mathcal{D}_0 \quad ||| \quad igg||_{\psi \in \mathcal{T}(arphi)} \mathcal{D}[\psi]igg) \!\!\!\!\downarrow_U$$

We proceed to show how to construct  $\mathcal{D}[\psi]$  for the various temporal formulas, recalling that the basic temporal operators for positive form formulas are

$$\{\bigcirc, \ \mathcal{U}, \ \mathcal{W}, \ \bigcirc, \ \bigcirc, \ \mathcal{S}, \ \mathcal{B}\}$$

$$\mathcal{D}[\bigcirc p]$$
,  $\mathcal{D}[p\ \mathcal{U}\ q]$ , and  $\mathcal{D}[p\ \mathcal{W}\ q]$ 

The FDS  $\mathcal{D}[\psi]$  for  $\psi = \bigcirc p$  is given by

$$egin{array}{cccc} V = \mathcal{O} & : & U \cup X_{\psi} \ & \Theta & : & 1 \ & 
ho & : & x_{\psi} = \chi(p)' \ \mathcal{J} = \mathcal{C} & : & \emptyset \end{array}$$

The FDS  $\mathcal{D}[\psi]$  for  $\psi = p \, \mathcal{U} \, q$  is given by

$$V = \mathcal{O} : U \cup X_{\psi}$$

$$\Theta : 1$$

$$\rho : x_{\psi} = \chi(q) \vee (\chi(p) \wedge x'_{\psi})$$

$$\mathcal{J} : \neg x_{\psi} \vee \chi(q)$$

$$\mathcal{C} : \emptyset$$

The FDS  $\mathcal{D}[\psi]$  for  $\psi = p \mathcal{W} q$  is given by

$$V = \mathcal{O} : U \cup X_{\psi}$$

$$\Theta : 1$$

$$\rho : x_{\psi} = \chi(q) \vee (\chi(p) \wedge x'_{\psi})$$

$$\mathcal{J} = \mathcal{C} : \emptyset$$

$$\mathcal{D}[igotimes p]$$
 and  $\mathcal{D}[igotimes p]$ 

The FDS  $\mathcal{D}[\psi]$  for  $\psi = \bigcirc p$  is given by

$$egin{array}{lll} V = \mathcal{O} & : & U \cup X_{\psi} \ & \Theta & : & \neg x_{\psi} \ & 
ho & : & x'_{\psi} = \chi(p) \ \mathcal{J} = \mathcal{C} & : & \emptyset \end{array}$$

Thus, the initial value of  $x_{\psi}$  for  $\psi = \bigcirc p$  is always 0.

The FDS  $\mathcal{D}[\psi]$  for  $\psi = \bigcirc p$  is given by

$$V = \mathcal{O} : U \cup X_{\psi}$$

$$\Theta : x_{\psi}$$

$$\rho : x'_{\psi} = \chi(p)$$

$$\mathcal{J} = \mathcal{C} : \emptyset$$

Thus, the initial value of  $x_{\psi}$  for  $\psi = \bigcirc p$  is always 1.

 $\mathcal{D}[p \ \mathcal{S} \ q]$ ,  $\mathcal{D}[p \ \mathcal{B} \ q]$ , and  $\mathcal{D}_0$ 

The FDS  $\mathcal{D}[\psi]$  for  $\psi=p$   $\mathcal{S}$  q is given by

$$\begin{array}{ccccc} V = \mathcal{O} & : & U \cup X_{\psi} \\ & \Theta & : & x_{\psi} = \chi(q) \\ & \rho & : & x'_{\psi} & = & \chi(q)' \ \lor \ (\chi(p)' \ \land \ x_{\psi}) \\ \mathcal{J} = \mathcal{C} & : & \emptyset \end{array}$$

The FDS  $\mathcal{D}[\psi]$  for  $\psi=p~\mathcal{B}~q$  is given by

$$V = \mathcal{O} : U \cup X_{\psi}$$

$$\Theta : x_{\psi} = \chi(q) \vee \chi(p)$$

$$\rho : x'_{\psi} = \chi(q)' \vee (\chi(p)' \wedge x_{\psi})$$

$$\mathcal{J} = \mathcal{C} : \emptyset$$

Thus,  $\mathcal{D}[p \ \mathcal{S} \ q]$  and  $\mathcal{D}[p \ \mathcal{B} \ q]$  differ in their initial values which are  $\chi(q)$  and  $\chi(p) \lor \chi(q)$ , respectively.

Finally,  $\mathcal{D}_0$  is given by

$$V = \mathcal{O} : U \cup X\varphi$$
$$\Theta : \chi(\varphi)$$
$$\rho : 1$$
$$\mathcal{J} = \mathcal{C} : \emptyset$$

Example:  $T_{\square(p \to \lozenge q)}$ 

Taking  $U=\{p,q,x_{\square},x_{\diamondsuit}\}$ , the tester  $T_{\square(p\to\,\diamondsuit q)}$  is given by:

Course G22.3033.007 Lecture 8

$$\begin{cases} \langle V = \mathcal{O} = U, & \Theta : x_{\square}, & \rho : 1, & \mathcal{J} : \emptyset, & \mathcal{C} : \emptyset & \rangle & \| \\ \langle V = \mathcal{O} = U, & \Theta : 1, & \rho : x_{\square} \leftrightarrow (p \rightarrow x_{\diamondsuit}) \land x_{\square}', & \\ & \mathcal{J} : \emptyset, & \mathcal{C} : \emptyset & \rangle & \| \\ \langle V = \mathcal{O} = U, & \Theta : 1, & \rho : x_{\diamondsuit} \leftrightarrow q \lor x_{\diamondsuit}', & \\ & \mathcal{J} : \neg x_{\diamondsuit} \lor q, & \mathcal{C} : \emptyset & \rangle \end{cases}$$

## **Explanation and Motivation for the Construction**

Consider first the simple case of a formula  $\varphi = \bigcirc q$ , where q is a state formula. The partial tester for this formula according to the prescribed recipe is

$$\mathcal{D}[\diamondsuit q] : \left\{ \begin{array}{ccc} V = \mathcal{O} & : & \{q, x_{\diamondsuit}\} \\ \Theta & : & 1 \\ \rho & : & x_{\diamondsuit} & = & (q \lor x'_{\diamondsuit}) \\ \mathcal{J} & : & \neg x_{\diamondsuit} \lor q \\ \mathcal{C} & : & \emptyset \end{array} \right\}$$

We can prove the following:

Claim 13. Let  $\sigma: s_0, s_1, \ldots$  be a computation of  $\mathcal{D}[\bigcirc q]$  and  $j \geq 0$  be a position. If  $s_j[x_{\diamondsuit}] = 1$  then  $(\sigma, j) \models \bigcirc q$ .

**Proof**: Assume that  $s_j[x_\diamondsuit] = 1$ . Applying  $\rho$  to position j, we obtain that either  $s_j \models q$  or  $s_{j+1}[x_\diamondsuit] = 1$ . Continuing in this manner to positions  $j+1, j+2, \ldots$ , we obtain that either there exists a  $k \geq 0$  such that  $s_k \models p$  or  $s_i[x_\diamondsuit] = 1$  and  $s_i \not\models q$  for all  $i \geq j$ . Since the second case violates the justice requirement  $\neg x_\diamondsuit \lor q$ , we are guaranteed that  $s_k \models q$  for some  $k \geq 0$  which, by the definition of  $\diamondsuit$ , implies  $(s,j) \models \diamondsuit q$ .

Course G22,3033,007 Lecture 8 R. Dewar and A. Pnueli

## Satisfaction Implies Computation of $\mathcal{D}[\lozenge q]$

Claim 13 showed that, within a computation,  $\bigcirc q$  holds whenever  $x_{\lozenge} = 1$ . The following claim establishes the other direction, namely, that a sequence in which  $x_{\lozenge} = 1$  at precisely the positions which satisfy  $\bigcirc q$  is a computation of  $\mathcal{D}[\bigcirc q]$ .

**Claim 14.** Let  $\sigma: s_0, s_1, \ldots$  be a  $\{q, x_{\diamondsuit}\}$ -sequence in which  $s_j[x_{\diamondsuit}] = 1$  iff  $(\sigma, j) \models \Diamond q$ . Then,  $\sigma$  is a computation of  $\mathcal{D}[\Diamond q]$ .

**Proof:** Since the formula  $\bigcirc q$  satisfies the expansion axiom

$$\Diamond q \iff q \lor \Diamond \Diamond q,$$

it is obvious that  $x_{\diamondsuit}$  satisfies the transition relation  $x_{\diamondsuit} = q \lor x'_{\diamondsuit}$ . It only remains to show that  $x_{\diamondsuit}$  also satisfies the justice requirement  $\neg x_{\diamondsuit} \lor q$ .

We consider two cases. First assume that  $\sigma$  contains infinitely many q-positions (states satisfying q). Since q holds at each of these positions, we are guaranteed of having infinitely many positions at which q = 1.

In the other case, there are only finitely many q-positions. In this case, there exists a  $j \geq 0$  such that there is no q-position beyond (or at) j. It follows that q is false at all positions beyond q and, therefore, there are infinitely many positions at which q = 0.

#### A Tester for $\square r$

Next, consider the case of a formula  $\square r$  where, again, we assume that r is a state formula. Since  $\square r \sim r \mathcal{W} 0$ , we construct the partial tester for  $1 \mathcal{W} r$ . This leads to the following partial tester:

$$\mathcal{D}[\square \ r] : \left\{ \begin{array}{ccc} V = \mathcal{O} & : & \{r, x_{\square}\} \\ \Theta & : & 1 \\ & \rho & : & x_{\square} & = & (r \ \land \ x_{\square}') \\ \mathcal{J} = \mathcal{C} & : & \emptyset \end{array} \right\}$$

which satisfies

Claim 15. Let  $\sigma: s_0, s_1, \ldots$  be a computation of  $\mathcal{D}[\square r]$  and  $j \geq 0$  be a position. If  $s_j[x_{\square}] = 1$  then  $(\sigma, j) \models \square r$ .

**Proof:** Assume that  $s_j[x_{\square}]=1$ . Applying  $\rho$  to positions  $j,j+1,\ldots$ , we obtain that  $s_i[x_{\square}]=s_i[r]=1$ , for all  $i\geq j$ . By the definition of  $\square$ , it follows that  $(s,j)\models \square r$ .

## Satisfaction Implies Computation of $\mathcal{D}[\Box r]$

The other direction of Claim 15 states that a sequence in which  $x_{\square} = 1$  at precisely the positions which satisfy  $\square r$  is a computation of  $\mathcal{D}[\square r]$ .

Claim 16. Let  $\sigma: s_0, s_1, \ldots$  be an  $\{r, x_{\square}\}$ -sequence in which  $s_j[x_{\square}] = 1$  iff  $(\sigma, j) \models \square r$ . Then,  $\sigma$  is a computation of  $\mathcal{D}[\square r]$ .

**Proof:** Since the formula  $\square$  r satisfies the expansion axiom

$$\square r \iff r \land \bigcirc \square r,$$

it is obvious that  $x_{\square}$  satisfies the transition relation  $x_{\square} = r \wedge x_{\square}'$ .

R. Dewar and A. Pnueli

Course G22.3033.007 Lecture 8

R Dewar and A Pnueli

## **A** Tester for $\square$ $(p \rightarrow \bigcirc q)$

Next, let us consider the formula  $\varphi = \square (p \to \bigcirc q)$ . The partial tester proposed by our recipe is equivalent to

$$\mathcal{D}[\square (p \to \diamondsuit q)] : \begin{cases} V = \mathcal{O} & : & \{p, q, x_{\blacksquare}, x_{\diamondsuit}\} \\ \Theta & : & 1 \\ \rho & : & \left(\begin{matrix} x_{\diamondsuit} & = & q \lor x'_{\diamondsuit} \\ \land & x_{\blacksquare} & = & (p \to x_{\diamondsuit}) \land x_{\blacksquare}' \end{matrix}\right) \\ \mathcal{J} & : & (\neg x_{\diamondsuit} \lor q) \\ \mathcal{C} & : & \emptyset \end{cases}$$

Note that  $p \to x_{\diamondsuit} \sim \chi(p \to \diamondsuit q)$ . The correctness of this constructions is stated by

**Claim 17.** Let  $\sigma: s_0, s_1, \ldots$  be a computation of  $\mathcal{D}[\Box (p \to \Diamond q)]$  and j > 0 be a position. If  $s_j[x_{\Pi}] = 1$  then  $(\sigma, j) \models \Box (p \to \Diamond q)$ .

**Proof:** Since  $p \to x_{\diamondsuit}$  is a state formula, Claim 15 implies that  $s_j[x_{\square}] = 1$  implies  $(\sigma, j) \models \square (p \to x_{\diamondsuit})$ . By Claim 13,  $(\sigma, k) \models \diamondsuit q$  holds at all positions  $k \geq j$  in which  $s_k[x_{\diamondsuit}] = 1$ . Combining these two facts, we get that  $s_j[x_{\square}] = 1$  implies  $(\sigma, j) \models \square (p \to \diamondsuit q)$ .

## Satisfaction Implies Computation of $\mathcal{D}[\Box (p \to \diamondsuit q)]$

The other direction of Claim 17 states that a sequence in which  $x_{\square} = 1$  at precisely the positions which satisfy  $\square (p \to \lozenge q)$  is a computation of  $\mathcal{D}[\square (p \to \lozenge q)]$ .

**Claim 18**. Let  $\sigma: s_0, s_1, \ldots$  be a  $\{p, q, x_{\square}, x_{\diamondsuit}\}$ -sequence in which  $s_j[x_{\square}] = 1$  iff  $(\sigma, j) \models \square$   $(p \to \diamondsuit q)$  and  $s_j[x_{\diamondsuit}] = 1$  iff  $(\sigma, j) \models \diamondsuit q$ . Then,  $\sigma$  is a computation of  $\mathcal{D}[\square (p \to \diamondsuit q)]$ .

**Proof:** Due to the expansion formulas of  $\bigcirc$  and  $\square$  and the fact that  $\bigcirc$  q holds precisely when  $x_{\lozenge} = 1$ , the two clauses of the transition relation obviously hold at all positions. By an argument similar to that of Claim 14, we can show that the justice requirement  $\neg x_{\lozenge} \lor q$  also holds. It follows that  $\sigma$  is a computation of  $\mathcal{D}[\square (p \to \bigcirc q)]$ .

## Adding $\mathcal{D}_0$

Finally, let us add the component  $\mathcal{D}_0$ , which imposes the initial condition  $\chi(\varphi)$ . For the case of  $\varphi = \square (p \to \lozenge q)$ , this leads to the following full temporal tester:

$$T_{\square(p\to \diamondsuit q)}: \left\{ \begin{array}{l} V=\mathcal{O} \ : \ \{p,q,x_{\square},x_{\diamondsuit}\} \\ \Theta \ : \ x_{\square} \\ \\ \rho \ : \ \left(\begin{array}{c} x_{\diamondsuit} \ = \ q \ \lor \ x'_{\diamondsuit} \\ \land \ x_{\square} \ = \ (p\to x_{\diamondsuit}) \ \land \ x_{\square}' \end{array} \right) \\ \mathcal{J} \ : \ (\neg x_{\diamondsuit} \ \lor \ q) \\ \mathcal{C} \ : \ \emptyset \end{array} \right\} \psi_{\{p,q\}}$$

The correctness of this construction is stated by the following claim.

**Claim 19.** The  $\{p,q\}$ -sequence  $\sigma: s_0, s_1, \ldots$  is an observation of  $T_{\square(p \to \lozenge q)}$  iff  $\sigma \models \square(p \to \lozenge q)$ .

Course G22 3033 007 Lecture 8

**Proof**: First, assume that  $\sigma:s_0,s_1,\ldots$  is an observation of  $T_{\square(p\to \diamondsuit q)}$ . It follows that there exists a  $\{p,q,x_\square,x_\diamondsuit\}$ -sequence  $\widetilde{\sigma}:\widetilde{s}_0,\widetilde{s}_1,\ldots$ , such that  $\widetilde{\sigma}$  is a computation of  $T_{\square(p\to \diamondsuit q)}$  and  $\widetilde{\sigma} \psi_{\{p,q\}} = \sigma$ . Since the initial condition of  $T_{\square(p\to \diamondsuit q)}$  is  $x_\square$ , it follows that  $\widetilde{s}_0[x_\square]=1$ . Clearly,  $T_{\square(p\to \diamondsuit q)}$  differs from  $\mathcal{D}(\square(p\to \diamondsuit q))$  only in its initial condition which implies the initial condition of  $\mathcal{D}(\square(p\to \diamondsuit q))$  and, by Claim 17,  $\widetilde{s}_0[x_\square]=1$  implies  $(\widetilde{s},0)\models \square(p\to \diamondsuit q)$ , from which we can conclude  $\sigma\models \square(p\to \diamondsuit q)$ .

In the other direction, assume that  $\sigma: s_0, s_1, \ldots$  is a  $\{p, q\}$ -sequence satisfying  $\square$   $(p \to \lozenge q)$ . We extend  $\sigma$  into a  $\{p, q, x_\square, x_\lozenge\}$ -sequence  $\widetilde{\sigma}: \widetilde{s}_0, \widetilde{s}_1, \ldots$  by assigning to each state  $\widetilde{s}_j$  an evaluation for  $x_\square, x_\lozenge$  as follows:

$$\widetilde{s}_{j}[x_{\diamond}] = 1 \iff (\sigma, j) \models \Diamond q$$
 $\widetilde{s}_{j}[x_{\square}] = 1 \iff (\sigma, j) \models \square (p \to \Diamond q)$ 

By Claim 18,  $\widetilde{\sigma}$  is a computation of the partial tester  $\mathcal{D}[\Box (p \to \diamondsuit q)]$ . Since  $\sigma$  (and hence  $\widetilde{\sigma}$ ) satisfy  $\Box (p \to \diamondsuit q)$ , it follows that  $\widetilde{s}_0[x_{\Box}] = 1$  and therefore  $\widetilde{\sigma}$  is also a computation of  $T_{\Box(p \to \diamondsuit q)}$ . It follows that  $\sigma$  is an observation of  $T_{\Box(p \to \diamondsuit q)}$ .

State-Transition Diagram for  $T_{\square(p \to \, \diamondsuit \, q)}$ 

