
Grundlagen von OO

Harald Fecher Martin Steffen

Christian-Albrechts University Kiel

Summer 2005

Structure

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Class-based languages

Advanced class-based features

Object protocols

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Variance

• goal: type disciplines to avoid typecase etc,

⇒ flexibility, expressiveness, but still statically checkable
• for illustration: 3 “type constructors”/“type operators:

1. product types S × T : covariant
2. function types S → T : contra/covariant
3. updatable products S # T : invariant

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Method specialization

• so far: overriding: identical type
• relax: method specialization (method spec. on override)
• note: we don’t do this for fields (updatable!)

class c is
method m(x:A) : B is ... end;
method m1(x:A1) : B1 is ... end;

end;

subclass c’ of c is
override m(x: A’) is ... end;

end;

Again: what are we allowed (safely) to do for A′, B′ in
connection with A/B?

• given: subsumption,
instanceTypeOf c′ instanceTypeOf c

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Method specialization and self

• implicit form of method specialization: hidden parameter
self

• self may occur in the methods of c or c′

• typed: InstanceTypeOf (c) resp. c′.

⇒ type of self gets specialized covariantly! (on inheritance?)

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Inheritance/premethods

• different perspective: methods as functions

⇒ pre-method

• objects as record of pre-methods (+ perhaps fields)

pm1 : InstanceTypeOf (c) × A1 → B1 , T
pm2 : InstanceTypeOf (c′) × A1 → B1 , T ′

• T ≤ T ′

⇒ pm1 is of the type of a legal premethod for c′

⇒ inheritance possible

c′ ≤ c A′

1 ≤ A1 B1 ≤ B′

1

InstanceTypeOf (c) × A1 → B1 ≤ InstanceTypeOf (c′) × A′

1 → B′

1

• take care: difference to override!

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Self-type specialization

• so far: method specialization: nice/flexible but not enough

• ignored: method types independent of the (type of the)
class1

• often: “recursive” class definition (type-wise): c contains
InstanceTypeOf(c)

1S and T independent of c. Exception: self parameter
SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Self-type specialization

c lass c i s
var x : i n t : = 0 ;
method m() : InstanceTypeOf (c) i s . . . s e l f . . end ;

end ;

subclass c o f c i s
var y : i n t : = 0

end ;

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Self-type specialization

• so far: method specialization: nice/flexible but not enough
• ignored: method types independent of the (type of the)

class1

• often: “recursive” class definition (type-wise): c contains
InstanceTypeOf(c)

• m is being inherited.
• Question: what’s “now”the return type of m? in general?

InstanceTypeOf(c) or InstanceTypeOf(c′)?

• InstanceTypeOf(c’): certainly wrong2

• in practice: often “return self” ⇒ then InstanceTypeOf (c′)
sound

• loss of information
• typecase/casts can be avoided
1S and T independent of c. Exception: self parameter
2Remember about contra/covariance and method specialization on

override
SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Self types

c lass c i n
var x : i n t : = 0 ;
method m() : Se l f i s . . . s e l f . . . end ;

end ;

• assumption: Self is (will be) subtype of c
• note: Self in co-variant position! (for inheriting)

• more expressive
• avoids loss of info
• Self : harder to type check than InstanceTypeOf(c)

• Self : even as type of fields possible, if assured that one
only updates via self

• unsound: Self in contra-variant (arg.) position
• Eiffel did this
• later may comes info how to defuse that partially

nonetheless.

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Class-based languages

Advanced class-based features

Object protocols

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Object types

• often: correlation of inheritance = subclassing = subtyping:
simple, but unclear/not too flexible . . .

⇒ separation (in particular) of ≤ and ≤

• separation of spec. and implementation3

• type:
• usage, no code
• implementation independent
• other names: type signature, object protocol, interface.

3always a good idea
SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Object types

• often: correlation of inheritance = subclassing = subtyping:
simple, but unclear/not too flexible . . .

⇒ separation (in particular) of ≤ and ≤
• separation of spec. and implementation3

• type:
• usage, no code
• implementation independent
• other names: type signature, object protocol, interface.

ObjectType Ce l l i s
var contents : i n t ;
method get () : i n t ;
method se t (n : i n t) ; / / n not needed , vo id as

end ; / / r e t u r n type

ObjectType Ce l l i s
var contents : i n t ;

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Subclassing implies subtyping

• so far ≤ is ≤, now: something’s new needed
• subtyping

• structural problem: accidental matching
• by names (nominal): conceptually unclear

• simplest form: width: rule

• especially: invariant “components” types4

• cf. multiple subtyping

c′ ≤ c

ObjectTypeOf (c′) ≤ ObjectTypeOf (c)

• note: implication only, partial decoupling
subclassing-implies-subtyping

4no (method)-specilization yet.
SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Type parameter

• general “technique” for code reuse5

• more flexibility in OO

Object Type Person i s
method eat (food : Food) ;

end ;

Object Type Vegetar ian i s
. .
method eat (food : Vegetables) ;

end

• Vegetarian ≤ Person?
• solution: abstraction!
• type operators

•
bounded type parameterization

(bounded operator
SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

example

ObjectOperator PersonEating [F < : Food] i s
. .

method eat (food : F) ;
end ;

ObjectOperator Vegetar ianEat ing [F < : Vegetables] i s
. .
method eat (food : F) ;

end

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Bounded type parameterization

• F: type parameter/type variable

• instantiated with a type
• explicit specification of the upper bound

• VegetariantEating[Food]: Nope
• VegetariantEating[Veggies] = Vegetarian

• take care:
• PersonEating: no type, there are no members
• VegetarianEating ≤ PersonEating

F ≤ Vegetables

VegetarianEating[F] ≤ PersonEating[F]
• especially: Vegetarian = VegetarianEating[Veggies] ≤

PersonEating[Veggies]

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Bounded abstract types

Object Type Person i s
type F ≤ Food / / bounded by Food
var lunch : F / / persona l lunch

method eat (food : F) ;
end ;

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Bounded abstract types

• also: partially abstract types

• different solution to the “vegetarians-as-persons” problem

• no parameter for “F”

• problem; F no parameter

• no food outside Person

• instantiation: choice of (internal) F + lunch

• but

Person ≤ Vegetarian

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Subclassing without subtyping

• so far: object types: partial decoupling

• now: complete decoupling

inheritance-is-not-subtyping

• goal: Self-types in contravariant position

⇒ : “more inheriantce, less subsumption” (since subclasses
do no longer lead to subtyping)

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Example

Object Type Max i s
var n : i n t ;
method max(o ther : Max) : Max

end

Object Type MinMax i s
var n : i n t ;
method max(o ther : MinMax) : MinMax ;
method min (o ther : MinMax) : MinMax ;

end

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

c lass maxclass i s
var n : i n t : = 0 ;
method max(o ther : Se l f) : Se l f i s
i f s e l f . n > o ther . n
then s e l f
e lse o ther

end

subclass minmaxClass o f maxClass i s
var n : i n t : = 0 ;

method min (o ther : Se l f) : Se l f i s
i f ‘ ‘ the o ther way around ’ ’ then . . e lse . .

end

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

• min/max: binary methods

• formal: what is “Self” in the object types?

• Recursion

ObjectTypeOf (maxClass) = Max (1)

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Example

subclass minmaxClass ’ o f minmaxClass i s / / f u r t h e r s
ove r r i de max(o ther : Se l f) : Se l f i s

i f o the r . min (s e l f) = o ther
then r e t u r n s e l f
e lse r e t u r n o ther

end ;

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

• inheritance of method min: specialization of Self

• we know minmaxClass ≤ maxClass, but

Minmax 6≤ Max

• problem: overriding, contravariant self

• binary methods

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Class-based languages

Advanced class-based features

Object protocols

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Object protocols

• as seen: subclasses 6⇒ subtypes

• of course MinClass and MaxClass not without relationship

⇒ new relationship

• first of all: op. abstraction does not help

ObjectOperator P[M ≤ Max]:= ... end;

• reason: MinMax 6≤ Max

• but: MinMax can “do” everything that Max “can do”

⇒
subprotocol relation

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Example

ObjectOperator MaxProtocol [X] i s
var n : I n t
method max(o :X) : X ;

end ;

ObjectOperator MinMaxProtocol [X] i s
var n : I n t
method max(o :X) : X ;
method min (o :X) : X ;

end ;

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Object protocols

• recursive types in Min/Max

• note: for each recursive type one has the “abstraction”

rec. type T ⇒ type operator/T-protocol

fixpoint of T-protocol ⇒ T

• relation of Max and MinMax?
1. MinMax ≤ MaxProtocol[MinMax]
2. alternative

• define ≤:
∀T .P[T] ≤ P′[T]

≤
P ≤ P′

• then MinMaxProtocol ≤ MaxProtocol

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Sub-protocols

2 solutions
S ≤ T − Protocol(S)

SP
S ≤sp T

S − Protocol ≤ T − Protocol
S

S ≤sp T

• back to the failed def. of the O-operator
1. ObjectOperator P1[X ≤ MaxProtocol[X]] is . . . end;
2. ObjectOperator P2[P ≤ MaxProtocol] is . . . end;

• now it works:
1. P1[MinMax]
2. P2[MinMaxProtocol]

• 1. F-bounded parameterization
2. higher-order bounded parameterization

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

Matching

• no explicit intro of type operators

• ≤#: relation over types

• intention: capture subprotocol relation

S ≤ T − Protocol[S]
MATCH1

S ≤# T
S − Protocol ≤ T − Protocol

MATCH2
S ≤# T

⇒ MinMax ≤# Max

• no subsumption

• but: as said: good for parameterization

• wrap up: contra-variant self = binary methods ⇒

subprotocol/matching

SS 2005 F-O-O-L

Class-based languages Advanced class-based features Object protocols

[1] Martı́n Abadi and Luca Cardelli.
A Theory of Objects.
Monographs in Computer Science. Springer, 1996.

SS 2005 F-O-O-L

	Class-based languages
	Advanced class-based features
	Object protocols

