
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Harald Fecher, Martin Steffen
SIEGEL

Fool
Sommersemester 2005 2005Serie 1

Thema: OO Intro (Aufgaben mit Lösungshinweisen)

Ausgabetermin: 2005

Abgabe:

Aufgabe 1 (Feature check-up) Find out, which (sub)-typing features we have discussed
in the lecture can be found in Java:

• nominal/structural subtyping? both?

• multiple subtyping?

• late binding

• method specialization

– on override

– on inheritancce?

• Self-type specialization

• type-case?

• (bounded) type operators?

• F-Bounded polymorphism

Lösung:

Subtyping: Basically, Java uses nominal subtyping, for classes as well as for interfaces. This
is rather understandable from the fact that Java uses the classes also as types at the
same time, which makes in unavoidable for classes. But also for interfaces (in the sense
of Java) which correspond roughly to the notion of object types that has been discussed
in the lecture, Java uses nominal subtyping.

This does not mean that there are no “nominal” parts in the subtyping relation at all,
of course, the names of the members (the fields and the methods) are compared by their
names.

Serie 1 (+ Lösungshinweise) 2005

Multiple subtyping: As for multiple subtyping, the situation is as follows. First of all, there
is no multiple inheritance (as for instance in C++), it least not in the sense we use the
word, i.e., inheritance means code reuse. In connection with the class types, there is
in consequence no multiple subtyping. For interfaces, however, Java allows that one
interface extends more than one interface (which must “contradict each” other in this
case). So one can say that Java supports multiple subtyping for the interface types.

Late binding: Sure. Some other words (not 100% synonymous) for this feature are dynamic
binding, dynamic dispatch or also (strange enough) message passing. It’s such a typical
feature of object-oriented languages, that without it one would not even call the language
object-oriented without it.

Method specialization: Java is disappointingly weak there On the other hand it is
flexible on method overloading, something which we haven’t discussed much in the
lecture. For instance, the code in Listing ??, which is the simplest instance of method
specialization on method override (co-variant in the return type), does not compile.

Listing 1: method specialization
// The f o l l ow i ng example t r i e s s p e c i a l i z a t i o n on method ove r r i d e
c l a s s U1{}
c l a s s U2 extends U1{}

c l a s s T{
publ i c U1 m() { System . out . p r i n t l n (”T.m”) ; r e turn new U1 () ; } ;

}

c l a s s S extends T {
publ i c U2 m() { System . out . p r i n t l n (”S .m”) ; r e turn new U2 () ; } ;

}

Since specialization (in covariant position) of the self-type on override is even more
specific than the specialization of the previous example it comes as no surprise that
neither the Example of Listing ?? does not compile. Note also that the code is no
example of self-type specialization, since the return type of the two methods is explicitely
given as T , respectively S.

Listing 2: method specialization
// ‘ ‘ s e l f −type ’ ’ s p e c i a l i z a t i o n on method ove r r i d e ?
c l a s s T{

publ i c T m() { System . out . p r i n t l n (”T.m”) ; r e turn t h i s ;
} ;

}

c l a s s S extends T {
publ i c S m() { System . out . p r i n t l n (”S .m”) ; r e turn t h i s ;
} ;

}

type case: not literally, but there is the instanceof -operator.

bounded type operators . . . In Java 1.5, there are type operators, but we haven’t tried
out whether there’s F-bounded polymorphism or something.

Aufgabe 2 Unter welchen Bedingungen ist (A → ((A × B) → C)) ein Subtyp von (C →

((D × A) → B))? Begründen Sie Ihre Aussage mittels den Regeln auf Seite 20f von [?].

2

Serie 1 (+ Lösungshinweise) 2005

Lösung: Geht bei Gleichheit?

Aufgabe 3 Was sind die Vorteile von ‘embedding’ (in objektbasierten Sprachen) gegenüber
von ‘delegation’ und umgekehrt?

Lösung: Well, not too clear, which one “is better”. One is more flexible, but perhaps more
confusing or difficult to handle.

3

