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Aufgabe 1 In Section 3.5 of [?], we have seen two ways to generalize subtyping into a more
relaxed relation called matching (written <) which helps in giving types to objects with
binary methods. The two definitions are the higher-order interpretation and the F-bounded
interpretation of <.

Abadi and Cardelli state that there’s no much difference in practice between the two
definitions. Now, can you find a (perhaps not a real-life) example which makes a difference
between the two interpretations? Or show that they are equally expressive?

Losung: See [?, page 33] We can concentrate on just the definition of <y, I think.
The thing is very simple. Assume the following two type operators/protocol.

Sp(X)={m:5 — 51} and Tp(X)={m:X — X}

Then we have

S <S5 Sy < S
{m:5 — S} <{m:5— 5}
S<uT

However, we don’t have
VX.S<Tp(X)={m: X — X}

Aufgabe 2 Let’s call the “naive” substitution the one that simply replaces the formal pa-
rameters, i.e., those mentioned via A-abstraction, but the actual parameters without taking
care of variable capture (also call parasitary binding or dynamic binding).

Consider the following proposal to avoid the capture problem: Take the term, rename
all bound variables' consistently such that they are all different. Afterwards, use the naive
substitution rule for g-reduction. Have you solved the problem of “variable capture”. Show
this or disprove this.
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Losung: No, it doesn’t work (otherwise the whole a-conversion business would not be
that prominent ...) Let us make the problem harder by making it more precise. So we look
not for a term that, by reduction, may require a-conversion, but one where independently
from the reduction strategy fails without a-conversion. Basically one needs some term like
Az. f(x,x), which duplicates the argument. It is however a bit tricky, so simply applying “x z”
inside some term seems not to work, The basic trick is, as before, to get a term of the form
(AZ.Ag.Z) g. Let’s call this term t4,.. Now we get:

(A Ny b (b 2" ) tywe Ty =5
()\:L'/-/\y,-ttrue (ttrue 33, y,)) 'y _’E
ttrue(ttrue x y)) _>E

ttrue Yy _>E

Note further

(Ax.z(xz122)) (A\x.Az2.1)
o

Aufgabe 3 ((-reduction) As discussed in the lecture, the fundamental computation me-
chanism in the A-calculus is called G-reduction. It is based on a “replacement” or substitution
mechanism. We write t{|s/x[} for the term where s replaces z in ¢. Formalize more rigorously
the notion of f-reduction and substitution.

Aufgabe 4 (S) Consider the following “program” (i.e., term)
S & Xe(Ay-(Az((z2)(y)))
What is the intuitive meaning of this term?
Losung: One could try to “type” it to see what it means.
SENf:T—8S—U\g: T — S.(\v:T.(fr) (92)))
The overall type of S is given by
S:(I'—-S5S—-U)—-(T—-95—T-U)

Aufgabe 5 (Confluence) “Is Java confluent?” Well, this is not a formal question for in-
stance since we have not formalized Java (later we will have formal object calculi where one
could pose the question formally), so discuss issues around confluence in a language like Java.

Lésung: In absence of multithreading, the answer is yes for a trivial reason: since the
evaluation strategy is determinate. With multithreading the answer is no.

Aufgabe 6 (Church encoding) In the lecture we have shown a way to represent the natu-
ral numbers as the most simple unbounded data structure into the untyped A-calculus. This
encoding is known as the Church numerals. The Church numeral corresponding to the natural
number n is

Az.As.8"(2) (1)

where s"(z) abbreviates s(s(...s(z)...)). Define the addition on the natural numbers.
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Losung: Well, for me it’s simpler to think in a (powerfully enough) typed fragment. The
addition function is of the type. Well, if we would like to define Nat, one can set

Naté\V/X.XH(X—)X)HX.
So, the 0 is given by AX.\z : Nat.As : Nat.z. The natural number n is given by
n:Nat £ AX.)\z:Nat.\s : Nat — Nat.s"(z) (2)

It’s easy to check that n is indeed of type Nat. We leave out in most cases the A-part.

In order to define the addition, it’s wise to start with the successor function. Why? Well,
addition intuitively is defined via the successor function (by induction, by iteration), so we
should expect this also here. The type of the successor function is given as follows:

add : Nat — Nat .

succ(n : Nat) = Az : Nat.\s : Nat — Nat.(n(sz)s) (3)
Let’s see whether it works:

succm = Az.As.n(sz)s =
Az.As. (AZ.A8.8"2) (sz)s  —y
Az.As. (A8.5"(s2)) s
Az.As. (s"(sz)) s =
Az s, sz =n+1

B

Well, fine. Now what is the underlying idea of the thing? Well, somehow it’s straightforward.
The number n corresponds to a function, that takes some value for z (which represents 0)
and a function value which represents the successor function. The succ-function that we
defined simply does not start from z but from sz. How does this observation help to define
the addition? Not much, at least we need to rethink what the definition of succ “means”.
Let’s look again at Equation ?77. At first sight, the construction seems like some more or
less meaningless term which has a “weight of n”, so in some sense simply counts. It’s a very
rudimentary counting system, not a fancy decimal or binary representation of the numerals,
but somehow a “unary” representation. Starting in a language where the is “no data, only
functions” it seems like some obscure “hack” gives us the desired “data”.

But that’s not all of it. Looking at n as a function (which it is), the function takes two
arguments and applies the second argument n times to the first. So, it’s not just that n is
some sort of representation of the number n, it is an n-fold iterator of a function onto a start-
value! Seen from that angle, it looks a much less arbitrary encoding. Actually, the encoding
captures the essence of a natural number, which is: the essence of a natural number is that
you can use it for iteration, or even harder:

the natural number n s the n-fold iteration!

So one can intepret the successor function very simply as: “you obtain the successor of n by
iterate the successor function n times when starting at 1”. That’s a quite direct translation
of Equation (77).

Well, if natural numbers are iterators, this gives us a grip onto the definition of addition:
what is it else than iterated successor. Now, addition is the iterated successor. Let’s define
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addition by induction, which might help us for the definition using Church’s trick. We use
induction in the first argument:

O+m = m
m+1)+m = (n+m)+1

Well, that’s not iteration, sure. What about the following:
n—+m = succ" m

Now we get to something. We argued above that n simply is iteration, well, now we can make
use of it:?
add z y £z y succ

And now we check against the above inductive definition. We must of course use the first
argument for induction, because we iterated over that one.

m+1)+m £ (n+1) m succ =
(Az.As.8"T12) m suce —
succ™ m = (by definition)
succ(succ™ m) = (by induction)

succ(m + n)
Voila.

Aufgabe 7 (Fixpoint operator) A fixpoint a of a function (very generally) is a value a
such that f(a) = a. The untyped A-calculus® is powerful enough that one can define a fixpoint
operator or fixpoint combinator, i.e., a function which, given a function, returns (one of)
its fixpoints. Indeed, the possibility to encode a fixpoint operator lies at the heart of the
expressiveness of the untyped X calculus, rendering it Turing complete.*

There are two more well-known encodings of fixpoint operators, the one of Curry and the
one of Turing. They look as follows

Y, 2 \y.VV  where V = \v.y(rz) (4)

Y; 2 Z7Z where Z = \y\z.x(yyx) (5)

Show that they are indeed fixpoint combinators. Does even Yy —7 y(Yy) hold?
Talking about fixpoint operators, Church numerals and the fact that “everything is a
function”: what is the fixpoint of “5” (or “0”)?

Loésung: Let’s start with the fixpoint of 0. Let’s take the encoding of Exercise 77, i.e., the
one of Equation (??), and Church’s fixpoint operator.

2We use freely infix notation and other conveniences.

3for various typed versions, the issue has to be re-addressed.

4Think about it: the fixpoint combinator in a non-functional setting corresponds to a looping constructs,
so it means that you can program a while-loop.
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YO = (Ay.(Azy(zz)) (Azy(zz)))0 —g
(Az.0(zz)) (Az.0(zx)) =
VoV =
(Az.0(zz)) W —5
0(Vo Th) -
0(0(VoVo)) =3
0" (VoVh) s
OUJ

The last “reduction step” is of course meant informally. Anyway, the fixpoint diverges. Note
that the fact that Y, 0 diverges does not depend on the reduction strategy.

The diverging behavior is somehow strange, even if we interpret 0 as “zero-time iterator”.
Actually, the representation as given in Equation ?? is not the only possible, we might as well
swap the order of the arguments and use

n:Nat 2 AX.\s : Nat — Nat.\z : Nat.s"(2) (6)

With this choice of representation we obtain:

Ay.(Azy(zx)) (Az.y(zz)))0

!

Y0 =

( g
(Az.0(zz)) (A\x.0(xx)) —7%
(Ax.Az.2) (Ax.Az.2) —

Az.z =id

So the rather arbitrary choice of representation leads to two rather different answers to the
question of “what is the fixpoint of 07”. Think also of that: the two representations of 0 can
be interpreted also as the Church encodings of true and false: the first projection At.Af.¢
corredponds to true, and the second At.\f.f represents false.’

Let us try also Turing’s fixpoint operator.

YO = (Z22)0 _
(Mg Az.2(yyz))(AyAz.z(yyz)))0  —4
(Ne.x(ZZx))0 —g
0(Z20)

This means we have (Z2Z0) —J 0(ZZ0), which means we may continue in this manner to
0"(ZZ0) and thus diverge. Using the definition of 0 from Equation (?7?), we may also continue
by 0(ZZ0) —p Az.z, which is a normal form. O

50bviously, which term corresponds to which interpretation is a matter of convention.



