
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Harald Fecher, Martin Steffen
!()+

Fool
Sommersemester 2005 April 29, 2005Serie 3

Thema: ς-calc. (Aufgaben mit Lösungshinweisen)

Ausgabetermin: April 29, 2005

Abgabe:

Aufgabe 1 (Free variables) Ponder the definition of free variables in [1, p. 61] (“object
scoping”). During the lecture, there had been shortly an “optimized” definition of that
function in the case of method update on the blackboard. It looked as follows:

fv(b.lj :=ς(y).b) , fv(b) \ {y} ∪
⋃

i∈{1,...,n}\j

(fv(bi) \ xi)

where the j is removed. What are the consequences of that optimized definition? Especially
in connection with the substitution operation defined immediately afterwards in the book.

Lösung: The real definition is given at page 61:

fv((a.l:=ς(y).b) = fv(a) ∪ fv(ς(y)b) .

Intuitively, the definition “carefully” takes into account all potentially free variables, i.e.,
it does not rely on the “fact” that the method l in object a is updated “anyway”. That’s
in general a bad idea to mix up the notion of free variable (or similar notions) with the
dynamic notion of reduction. It would be like a statement

y /∈ fv((λx.t)y), if x /∈ fv(t)

The intuition is the same: we know that y is thrown away and thus we conclude that it
does not occur free. First of all, that’s nonsense.1 Second of all it can change the semantics,
because we assume that as the very next step, y is fed into the argument.

Here is an argument why it is a bad definition. One would like to have a statement like
the following:

1Well, perhaps not nonsense. In some sense, arguing this way throws in flow-analysis.

Serie 3 (+ Lösungshinweise) April 29, 2005

The semantics of a program depends only on the values of its (finitely many)
free variables (and the text of the program itself, of course)

That’s very typical of syntax (of all kinds) where one has (free) variables.2 More formally,

if x /∈ fv(t), then t{|a/x|} ≡ t{|b/x|} , (1)

for all a and b, where by ≡ we just mean an informal notion of equivalence. If we don’t
count y in the λ-example or the free variables of the replaced method in the oc-example
among the free variables, this intuitive equation does no longer hold, if we substitute the
diverging term.3

That was a more or less informal reasoning why “optimizing” the definition of free
variables means we are heading for trouble. We should consult the real definition of [1]
to see the consequences for the official semantics. The above observation also concerns
the reduction semantics, in particular the non-deterministic →, respectively substitution

which forms the core of the computation mechanism. Let’s look at the relevant case of
substitution:

(a.l:=ς(s).b){|x/c|} , (a{|c/x|}).l:=(ς(s).b){|x/c|} (2)

This means the substitution concerns the full a; i.e., even if a is of the form {. . . , l(s) =
d(x), . . .}, where the method body d contains x, the x is replaced by c. So if we take the
→-semantics, the definition is “wrong”, however its a bit tricky, since the substitution does
not “directly” make use of the definition of free variables. Let’s take the following example:

a = {l(s) = (b.l′:=ς(y).y)} where b = {l′(s′) = f(x, z)} (3)

With the alternative definition we have x /∈ fv(a). That is however, not relevant. What
breaks the neck of the definition of substitution is that z is not counted as free (the status
of x is not so important, even if we could have suspected that after the above discussion)!
Let’s calculate:

a{|c/x|} = {l(z) = ((b.l′:=ς(y).y){|z/s|}{|c/x|}} z /∈ fv(ς(s).(b.l′:=ς(y).y), c, x)
= {l(z) = ((b.l′:=ς(y′).y′){|c/x|}}
= {l(z) = (((b{|c/x|}).l′:=ς(y′′).y′′)}
= {l(z) = ((({l′(s′′) = f(c, z)}).l′:=ς(y′′).y′′)} .

So here we have again the effect of parasitary or dynamic binding. Since we did not count
z to occur free, z is now captured. Still, if it is assured that the method update is evaluated
before anything involving z is evaluated, that’s ok. For the -semantics, it seems accepta-
ble. For the →-semantics, the captured binding can be used to construct a un-semantical
example, involving divergence. For instance, choosing to be a method call

f(x, z) = z.l

2One can even use it as a “syntax-free” definition of free variables.
3Note however, that the definition of substitution makes only indirect use of the free variables, i.e., it

substitution is not formalized in stating “replace all free occurrences . . . such that . . . ”.

2

Serie 3 (+ Lösungshinweise) April 29, 2005

The capture of z by the binding suddenly makes z.l to a recursive call to the outermost
object. This certainly is wrong as it does not match the intended meaning of the program
from Equation (3). The opinion, that “maybe the behavior is exactly what the programmer
had in mind” is not tenable, since it was simply by accident namely by renaming s to a
variable z which was considered to be available, that the diverging behavior occurred.

Aufgabe 2 (Divergenz) Geben Sie einen ς-Term an, der terminierende und nicht termi-
nierende Reduktionsschritte bzgl. −→ hat.

Lösung: That’s simple. First define a non-terminating term. It’s quite easier than in
the λ-calculus, we do not have to come up with strange things such as Y -combinators . . .
Instead we can directly write down recursion:

ω , {l = ς(s). s.l} . (4)

It’s easy to check that

ω.l →β (s.l){|ω/s|} = (s.l){|ω|} = ω.l . . .

While at it, let’s compare it also with the way the weak-reduction, big-step semantics
handles the situation:

...
Call

(s.l){|o/s|} = o.l
Call

o.l
We see that there is is no derivation such that o.l t. This is typical: divergence (or also
other failures) are represented by absence of a derivation.

Now we simply need an object with a method that throws away its argument.

o , {l = ς(s).[]}

Then o.l(ω) may or may not diverge. Note the contextual definition. A context is a “term
with a hole”, written C[]. For instance putting the hole “around” ω gives

o.l([ω])

which diverges. If we use the empty context, i.e., put the whole around the complete term,
yielding [o.l(ω)], the reduction rule throws away the ω.

Aufgabe 3 (Soundness of weak reduction) Beweisen Sie Proposition 6.2-3 aus [1].

Lösung:

Aufgabe 4 Definieren Sie induktiv die Menge der ς-Terme (auch als Normalformen be-
zeichnet) bei denen keine → Schritte mehr möglich sind.4 Zeigen Sie, daß kein ς-Term zu
zwei verschiedenen Normalformen reduzieren kann. Benutze dafür den Satz von Church
Rosser (Theorem 6.2-2 auf Seite 62).

Lösung: The definition is not 100% context free but reasonably so. We just must form
terms where no {}

4→ ist die “Einschrittdefinition im Kontext” die auf Seite 62 definiert ist.

3

Serie 3 (+ Lösungshinweise) April 29, 2005

Literatur

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, 1996.

4

