".l
__thw'ﬁ;:g belad A-C reecronng Wik

Wew rensomny IN ISOLATION abmd
/Dmc&SC .P, m-\mum‘caﬁ‘:j ‘67 5'7‘444/‘. Ikes'fdjf_ /M.er'
with B luviramend , one Showld ask the # Guestine

Aour WHick CQuennines Do I weed wFo !

T el Shei a{P, xpesed by ¥
zeécmpz 7700 I
720_ I'h.p«d".(’ Snee :Mt—:h/iw‘?a, . &x,nmo(‘7 hH

—

—

prea&zam on the Corypullaion L-Jﬁg £

{ - IF also /pnyg Like 6/0041‘7 are needed X o €
Lormai must b€ exeded)

—

1
fs".z
Y ¥ me bnnrs @, Re precondFin , A alse Hai
@rrompption A hotds aﬁZ- bvery wput
¥ @ possible to express whak propertics hsld fo-

He ovipuk o a processt, Expressed &

Comms Emend C ’ M,
e TR .
Y

in case P Hrminaits , b posteodibion
(et wlpiove t @ acd .

o & #.u", F SP/?/ﬁ;P)"_??é
s ¢ (7,4 ?) -> C
i
S/’[?,A',/”) ad Shomgest COP I rnld” §C(¢zﬂap/

(Eb(anw. o ﬂﬂ:assu"“.g é(Afcz-g‘?g Pf*}

¢ Moo ton A C rtasming byplid. b mfife Compuiaiing
wu will. ﬁ»m‘.;f /7 doesaf I‘Muw‘ﬁl
ot toy Atuje of e Comp. , once @ held, S e
bitickd Stwie | anod A holds ﬁ, my h»youl- fake- place

jzﬁz thai S/t_j-e_ t{@x«y, i [w retlse fC/%ﬂ,Pj)

AL rwmj S‘pea/‘es Renenve Sys7erM S ()

1.‘9

6 ‘716«,{«(, M Mt reagem Moy b ot {":3
FINITE AND INFIMITE Compuinzions

o Mo desenbe an m%‘m’/c- COmpuiriiom 47 e a{
a,é{ (h /)htﬁ'xf-f - ﬁ* A‘A IH%h'E Cﬂ'-f by M«u‘fgge
deitrmined 17 HorS 7€t
/41(0 we_ e au.e /-«‘M,a,/;é& I OmOnT, g

TNVARENCE propectie, , ad 19 check AHese , 24
alf ﬁl«‘k‘" /Mﬁ}es need 5 bt Cxancnef

® Simce we have wy ﬁl«'k' Rfad«.(@ og Avo lends

— prefixes a/ mf. Comps
= /}rw,f.'m,; 4 J Hrnanaitd COmpucoiros

bt need 1o DISTINGUUSH THESE
=)
dome 57 tklnd«.a:j an Oxha Terachadin /&5 r
MeCacng tibeller a on-.,, has Forminaied |
N hoT-
bap'd by T (btten)

)

X@® - ¢

Definition 7.30 The compositional semantics O[[P] of a program P is defined
as follows. For B = (L,T,s,t),

o O[[B]] gUleL{(G’c’,e;J—)Koad;e) € OI(B)}
U{(O',O",B,T)I(O',C",e) € OI(B)})
e O[P;P] ={(0,61,8,1)(5,061,8,1) € O[A]}
U{(0‘,62,9,’5)|30'1,91,92.(0',0'1,91,T) € O[P]
A(61,02,02,7) € O[P]] AO =6;-0,},
e O[P||P,] = {(0,0",0,7)|fori = 1,2, (0,5,,0P,1;) € O[P]
ANB = 9¢Chan(P1||P2)
ANT=Tom=TATLL=T)),
where
oy(x), if x € var(Py),
o'(x) = {G’z(x), if x € var(P,),
o(x), otherwise}. O

Note that, due to the condition 8 = 0/ Chan(P;||P;) in the definition of
O[P1]|P2]], © does not contain communications along channels not occurring
in Py||Ps.

) =

ﬁwmsé, b had as Formai ﬁ oyr ™
i(r, a*',é)/.. ;r

Now we g4t a2 forai .. :
f[ﬂ’,rﬁﬂ,fD/"" §L.T] - f

Read /e{ 7 30 -
Notz : o no “dirt "1 O allored e, OV(N7) -0
. forbtsfc [Seﬁ) 37uo£r. Lols ,/&5_
W . reacl node €,
Hhe Wc, are mavked ? =2 B

ook whhem in RIE, bt ?rlﬁo(/:_éa_{c
recded Her oen ﬁka./ loeasrons , e
Wmd a3 Hormaaied
B . o

o Obsorve Hoi (2 def. 7.30

/mf;‘x Clo Swre 1§ /rcservea((t«*‘/"“‘ﬁm def 4 M"“)

hp/u‘mugj e heed Had [V',U',,ﬁ,.t).{[@r',€,7')

(oHhermse ;" doesn’t preseve prefix o(»uw)

X i

15 Definition 7.30 The compositional semantics O[[P]] of a program P is deﬁTeq“ (.{(
as follows. For B = (L, T,s,1),

U{(c,0’,8,T)|(c,0',8) € O,(B)},
e O[P;P,] ={(0,01,6,1)|(c,01,6,L1) € O[P,] }
U{(6362181T)|301381982'(0701:813T) € O[[Pl]]
A (01,0‘2,92,’5) € O[] N6 =06, -92},
e O[P||P;] = {(o,0,0,7)[fori=1,2, (0,0},00P;,T;) € O[P]
Al = 9J,Chan(P1]|P2)
At=Tami=TAn=1)),
where

o} (x), ifx € var(Py),
o' (x) {

e O[B] £ Uie1{(6,7,6,1)|(0,',6) € O1(B)}

o5 (x), if x € var(P,),
o(x), otherwise}. [J

Note that, due to the condition © = 0 Chan(P||P;) in the definition of
O[P1||P:], 6 does not contain communications along channels not occurring

in Py||P;. rrﬁ{/‘& ‘xa(js-"j“
HERE L defd by
(0,0 8,2) < (7'8,7) Froament
(7,656, 4) < (re’, 08, 7) /""‘f/"""’J"'“&L

Witk &hes de/ (
onn, Pa.:l] and 0[' AR] presérve

flfz-dom
Je. ; ron_z;.,z; ;:{’Ifk-doel, ‘.D

14

-IL
7.€.4

6 QLu’,Zé lat C;—m.a: te Slediiom é.d
process Fﬂm"nﬁh @,C)
/mmv(u(X
N Rdan o o O?auj Compuiniion

P acies Showdd S‘a&yﬁ C , as /'_3, at
3 tas hecn Somsfid befoe by P Lormness,

/e., (A, ¢) st b€ S’amf'ea(by alf /0«041&:
4 f Cﬂ-/m-f"'m'}‘ms :
o Obsene tlai tte oof. o bng tle S€nS afé‘es,‘c
frowsSihon aﬁf'ajrm.s [df /Mfr'xeo a{ma Conyt
01 B ar Mﬁst‘d&ﬂ'»{ -
. ’E\M “;“ &"\a(7 < WWC /7"t'

v clnm

W[’,ﬁ;lu‘hj CWV:£1) < (o',rﬂa,"r)

o
)

Recall that an A-C correctness formula has the form

(A4,C) : {0} P {v},

where A and C are trace predicates (defined below) and ¢ and y ordinary pred-

icates.

Definition 7.31 A trace predicate A is a predicate which involves no program
variables ¥ C Pvar; its satisfaction depends only on the communication se-
quence which is recorded in the value of / and on its logical variables. For a

trace predicate A we have that for all ¢ and ¢,

CEA & o EAiffo(x) = o/(x), forx € LvarU {h}.

Now validity of an A-C correctness formula (A,C) : {@}P{y} has the fol-

lowing intuitive meaning:

If @ holds in the initial state, including the communication history, in which P

starts its execution, then

(1) C holds initially, and C holds after every communication provided A

holds after all preceding communications, and

(i1) if P terminates and A holds after all previous communications (includ-
ing the last one) then \y holds in the final state, including the final

communication history.

Formally, validity of A-C formulae is defined as below.

Definition 7.32 (Validity)

= (4,0): {0} P {v} if

V(0,0',6,7) € OP].
Q=
(V&' <0.(c:h+=>o(h)-6') EA)= (0:h o(h)-0) = C) A

(t=TA(V0' 20.(c:h = o(h)-0') EA)) = (6" : hs o(h)-0) £).

13

PROOF METHOD

Definition 7.33 (A-C-inductive assertion networks) Q is an A-C-inductive
assertion network w.r.t. A and C for B = (L,T,s,t?) if:

e FQs—C.

e In case of an internal transition 3> ' € T,a= b — f, we require

FEQIADANA— Qpof.

e In case of an output transition I 5 I' € T, a = b;Dle — f, we require, for
v =e¢(0),

= QIAAADL— (A= Qr)AC)o(fog),

where g(6) = (6: h— o(h) - (D,v)).

e In case of an input transition [5 I’ € T, with a = b;D?x — f, we require,
for an arbitrary value v € VAL,

FQQAAAD = ((A— Qr)AC)o(fog),

where g(0) = (0 : x,h — v,6(h) - (D,v)). =

L

Rule 7.11 (Basic diagram rule) For B = (L,T,s,?):

Q(A,C) - B
(A4,C): {Q} B{Q}

Example 7.35 (Even number generator) We demonstrate the application of
the method by verifying the first specification of Example 6.1, i.e., for the
program P of Figure 6.3 one has

= (true, #D = #A =#B > 1 — last(D) = last(A) + last(B)) :
{#D = #A = #B = 0} P { false}.

We have the following assertion network for P:

Q;=#D=#A=#B=0,

Qi =#D =#A=4#B,

Qi, £ #B=#D = (#A— 1) Alast(A) = x,

Qi £ #A =#B = (#D+ 1) Alast(A) = xAlast(B) = y, and
def

Q; = false.

Example 6.1 We continue the example from Figure 6.1 and propose an im-
plementation of P using distributed communication in Figure 6.3.

N

'{\. \

Fig. 6.3. Structure of adder P.

D!(x+y)

Ex- 15T prve : b Ctue, pDpAFB21 —y lan (D) lest ()4 lasr(B) D 6‘7
FED.pA-pB:0f P § e }

Example 6.1 We continue the example from Figure 6.1 and propose an im-
plementation of P using distributed communication in Figure 6.3.

P: /1,—> C? #U=pA-= HB=o

,-W) %‘: [ﬂ:fﬂ:(fﬂfﬂg/‘ﬂ[ﬂ);z A /4«.:.[/3}-.-;

@é: /‘f <"'"—"'_-® f;msm F@;a(gd.c.)o}

7

Fig. 6.3. Structure of adder P. hith j(ﬂ‘) = (T4 Tﬂ) . (D, alx)e G{g))
A”c[(w—t'o- g MC éﬁffz ’D(k’m r.'é . F;V‘ & 5(" 7;$ C’> :
@(A’ 62/_ 5 25tablirkes e /)rn/

> KAy 4258

A/(Ad-, prive He nare bk Afs,‘f/ (# A/h.'oda/(/eg?(@/t (f@)o ..,a#(/d#//@g7
td C, éf({ﬂ/d H#B2/- W&[M(DJ/ Me lavimoamens aﬂnr Stpplicy odd mumbers

Example 6.1 We continue the example from Figure 6.1 and propose an im-
plementation of P using distributed communication in Figure 6.3.

Covtite, #e VC for (4, 8%, 4)
Ve F o (P52 9)~)27
(&:{p HA e R . - W, gf) ﬁ/[cr.'(/-o k). (B.7))

D!(x+y) rb&e«ar M can Conchde y: last{/3) as 46/«,
e clain of &) Wt odld st (1) holdh .

- 5 A-1)A i v,
G, %(%3 x[ﬁ Wj ((lan(B))

4 {A__fg:gpfr}/\ lat(A)* é—-"‘ Canner ke ,m:/ whend uSry Pla mfo 7Ass,
¥ last{15)c ¥ Aﬂg) "f_ffﬂ Har also /ff(e lasF Conm .vin AR
M a0 ond (ler(3))
Ca., be arrvened
Fig. 6.3. Structure of adder P. -
: / %":1" (//f) clacse 4

el

Example 7.36 (Continuation of the previous example) The assumption that
the environment always provides odd numbers via channels A and B is for-
malised by

Ass; = (#A > 0 — odd(last(A))) A (#B > 0 — odd(last(B))).

Using this assumption and the following assertion network:

Q,E #D=#A=#B=0,

Qi = #D=#A=4#B,
Q= #B=#D=(#A—1)Alast(A) = xAodd(last(A)),
Qi = #A=#B= (#D+1)Alast(A) = xAlast(B) = yA

odd(last(A)) A odd(last(B)), and
Q; = false,

one can prove similarly, as above,
= (Assy,C) : {#D = #A = #B = 0} P{ false},

where C; = (#D = #A = #B > 1 — even(last(D))). Here we observe the use
of assumption Ass; for proving the verification conditions. Consider, e.g., the
transition (l»,B?y,l3). The associated verification condition is

= Qu, AAssy — ((Ass1 = Qi) ACh)og,

where g(6) = (6 : h— o(h) - (B,6(y))).

While we can conclude that y = last(B) holds as before, the claim of Q,
that odd(last(B)) holds, i.e., that y is an odd number, is not provable without
the information of assumption Ass; that also for this last communication via
channel B one can assume that odd(last(B)) holds. O

e -

[R e

‘L. 17

Phur & wair P put via A and .
E”’z bwe Studs 1 vin both Aad /B
ﬂb,fddxm vebues aim.&,hoézwu}

Nav Env wuctves an uen valur o $od, back odd ks, .
P recemts tne odd vibuse a. Sedy ter EVEN fdpm back , -

Ths qpecssonal toplassie. ol EnglP bokaves Comecth, coianm
&,f«tﬂ‘, Qe 18decciinn aguouc-.?.' We call thes SPIRAL fé]go”,‘ﬂ; (i Ca-Fad-). |

Our f,“/ /,,.,,‘{ urny Ve par.copn. tule JVES MOT DSALAY THIS LD AR |
S) (Fis hadde. 1. He JM)A/JE'IS I%ove gfﬂ-t /ua-,o’?w& |

—

(f;h_,./.,ty 4) /:r/(a:; /"‘7"‘:/;’*&9"’)

1.\3

&

¢

Rule 7.17 (Parallel Composition)

(A1,C1) < {o1} P {wy1},
(A2,C2) : {02} P> {y2},
ANC) = A, ANCy — Ay

(A,CIAC) 1 {1 A @2} Pi||P> {1 A2}

provided

(i) var(A1,Ci,y1) Nvar(P;) =0, var(A2,Ca,w2) Nvar(P;) = 0, and
(ii) Chan(A1,C1,y1) NChan(P;) C Chan(Py),
Chan(A3,C2,y2) NChan(Py) C Chan(P;).

Consider the parallel composition P, ||P;, and assume we have assumption-
commitment pairs (Al,Cl) satisfied by P and (Ag,Cz) satisﬁed by P;. Which

W
e If A; contains assumptions about joint channels of P, and P, which connect

these two processes, these assumptlons should be]g§;;ﬁed bX the commit-

ment Cy of Py.

e If A, contains assumptions about external channels of;} i.e., channels that
Y
are not connected with P;, these assum t1ons shou]d be u§t1ﬁed by the new

B —:iﬂ——“'
network assumption A for Pl .
5 Tt __hﬁﬂ;g g -

Imposing both these conditions leads to requiring validity of the following
verification condition:

ANC] = Az,

Validity of AAC, — A is argued similarly.

7.52

i 4.3

The soundness of a parallel composition rule with these implications de-
pends Beawly on the definition of validity of the formula (A;, C;) : {@; L m
for i = 1,2. Observe that {if 1n this deﬁmtlon ong.had chosen a simple implica;
tion between A; and C; to hold mstead of (A,,CI {(pj_{’,{:w'} then the above
Tule would have Ied to c1rcu1ar reasomng, since thenA1 —-Ci—2A—>Cr—=A
might have been implied. Because of this reason the rule would have be-
come unsound. To see this, choose A = true and A] = A, =C = =
false. Then in this changed interpretation, the above rule would have im-
plied (true, false){@} P {false}, which contradicts the intuitive meaning of
A-C formulae given earlier.

To avoid such problems, in defining the validity of (A;,C;) : {@i} Pi {wi},
we have required that if ¢; holds in the initial state then:

(i) C; holds initially, and
(ii) C; holds after every communication provided A; holds after all preced-
ing communications.

Hence, false cannot be used as the commitment in a valid A-C formula with
assumptlon true,i.e., the deﬁm:u.og_ of the validity of / ectness formulae, |
ates an i __ucmg gg ‘The associated inductive argument is p‘él“t" of
the soundness proof of the parallel composition rule, and no longer needs to be
given, when applying this rule.
" Consequently, the above rule plays the same r6le for the parallel composition ‘ ’

of synchronously communicating processes as Hoare’s loop rule (Rule 9.9 in
Chapter 9) plays for iterative constructs.

We deduced : o (f A0 > odd (last(R)) 4 (#7220 — odd (lewe(BY) 5 (#D-pA-$/ 22 - é’% (lex (b)) }§?
A;;; f#ﬂ.#i:f& ::05 y ;ﬁ/z) C;—_
b b e g{,p n.E ftrue, ASSyy: & ffl;:fl:of @ ffotke § sie. ,ufhose ‘g I~ wlies A“z

Example 6.1 We continue the example from Figure 6.1 and propose an im-
plementation of P using distributed communication in Figure 6.3.

e T
X - 544
Fig. 6.3. Structure of adder P.

K“‘""‘"j Pl GYB, Lads b 2 mes. wit (A’,c‘);%m.,#‘ﬂ:ﬁmf B . I 2
por 5 false

'{l.ﬂ"’

We deduced : ﬁ{@_‘ﬂ)o —> oddl (/‘Sf/ﬂ})} A [# /g)o - d/(ﬁ&(ﬁj!/, @}_ fﬂiffg 27 ém //Mﬂ> .
Ass, L) A-p =G ¥ §fale) - ;
Next toe Couthuci 6y s & for P 1.6 f Strue) ASS,: & fﬂ!:/l.-o; @ ffake S ;fie-,Aﬂoug wphes Ass,

- Ey. e, 4 544;//1 g, 8 @
(e A0 ->oldluss ()5 : § #A=5B, 5k} cif;_‘_ ,
(" " 4?,_ /)Mn%.'

G
2
_ /‘{{m,#/b,f—7&////%(/3,))7.';#/3:‘f‘2_ {M/// ‘ﬂ.’x O // Arl e
~_J

/3/ a,v/r/. e por M—y}'&«lf- 74/)4154(5 4:@//4@_
we i 1le 9’(:..#(? “M.

Sinee Jo f;ﬂf- Agﬂ/?gz—idl{/n#[ﬂ)}—? bow | B aoldl. VEY

’%"cf ", n,.,.’f;."f @ @
(] Sk m QRT3
fnd Sotirt,y /.Afa%t.,ﬁ% : 6?‘4}/‘8

a/__‘b'.mj ' 4 &,’//62 2oy, b o neiw. ek (4,()‘?/<m:fp’ﬁ4‘/ P /&17{”(»)))
/)u-t I’y ,ﬂA :#,3 :.fDT"
por ¥ fatie

a
-
’.‘F

-

x-"" Example 7.37 Since we want to use P as an even number generator, we have 7 %
to provide a program Q; that sends odd values via channels A and B as required
in the assumption Ass; in Example 7.36. This program sends odd numbers via

Qi :

x:=x+2

ONENO

channel A and can serve as part of the environment of P. We can give a local
proof of

 (true,#A > 1 — odd(last(A))) : {#A = 0} Q; {false}.

If we modify the program Q; of Figure 7.6 such that the output staternent A lx
is replaced by B!y, and call the resulting process Q,, then Q1]|Q> constitutes
an environment in which P will generate only even numbers.

Because

F (true,#B > 1 — odd(last(B))) : {#B = 0} O, {false},
by an application of the parallel composition rule we deduce that

- (true,((#A > 1 — odd(last(A))) A (#B > 1 — odd(last(B)))))
{#A = #B = 0} 01||Q; {false},

since |= true A (#A > 1 — odd(last(A))) — true and = true A (#B > 1 —
odd(last(B))) — true.

We see that the commitment of Q]|Q> is exactly the assumption Ass; of Ex-
ample 7.36, and since

= true A (#A > 1 — odd(last(A))) A (#B > 1 — odd(last(B)))) — Ass

and
F=true N\#D = #A = #B > 1 = even(last(D)) — true

hold, we can apply the parallel composition rule again to obtain (after some
simplifications using the consequence rule):

- (true,#D = #A = #B > 1 — even(last(D))) :
{#A=4#B = #D = 0} 01]|Qa||P {false}.

That is, with Q; and Q; as the input generating environment, P acts as an even
number generator, as desired. : O

|
EX 1.8
The por. compon®n ule is Commprsinonml. ie.; it oly goermBs o

SPECIFt eATIoN 1 :
e S 2 %——-_;_-_ lu e d‘d‘“‘é a Q'EC 4&'1‘(&’. 'pw%'

0[? M@Cd . __’ﬁf’
< Ao > odd{lan (AY)A (#/Bro > otd flan(B)), (#D-f A 351 —> € ven (a6 (2)) 5.2 P
™ i
Puf m Qn bv. 4? Mﬁfj CP

(‘ﬁut, ﬂ,) oe ¢“' /\.._-—4/‘6: /m/é)‘c p P/¢‘
M composed Pum @ ...9 PIF /)u?)ﬁy (true, #0:- #A -} 31 — b s -)

Mwmofﬁfaérfw ev & F: f"’ ~v ¢ Z
Sady's & covtimed F
/)
9.7)(// é'“
Des

CAF (#17 (+(o (s Q)< AV) | 4o
B2~ (o fan(B)A (B1) < A j&// a

mh € as Mfmyﬁwﬂ.‘e.,a/nj D ewe.

Vadues am. weaved .

The conpm¥ion Eirv / o agais .0-.6'3/

< frr CP > Em)P

94 ® (&) r

pifxn)

Rule 7.12 (Consequence rule)

(4,C) : {@} P {v}
A=A, ¢ =0,
CoC,y-ovy

A, C) {e'} P {v'}

Rule 7.13 (Prefix invariance) Let cset C CHAN be a set of channels,and t €
Lvar.

(4,C) : {o} P {y}
(A,CAt < hlcset) : {p At = hlcset} P {w At < hlcset}

Rule 7.14 (Assumption closure) Let cser satisfy Chan(A) C cset C CHAN
andt € Lvar.

(4,C) : {0} P {v}
(A,CAVt.(to 2t < hlcset = A{t/h})):
{@Ato=hlcset} P {wAVr.(tg <t < hicset = A{t/h})}

Here A{t/h} denotes substitution, i.e., A{t/h} = Ao f, with f : T 3, f(0)(x)
= o(x) for x # h, and f(o) (k) = o(t). Observe that this rule is consistent with
Definition 7.32 in that also A{#/h} is requxred to hold in the C and y parts of
its conclusion.

Rule 7.15 (Initialisation)
(4,C) : {@} P {v}
(A,C) : {@o f} P {y}

where f is a function such that its write variables constitute a set of (logical)
variables that do not occur in P, A, C, or y.

Rule 7.16 (Sequential composition)

(A,C) : {9} P {8}, A,C): {E} P {w}
(A4,C) : {o} Pi; P> {y}

N

Soundness of the basic diagram rule

Theorem 7.41
The basic diagram rule is sound.

Lemma 7.42 Given the above, we have fori =0,... ,n that:

(i) (VO 26;.(c:h+> o(h)-0) EA) = (6;: e o(h)-6) = Q.
(i) (VO < 6;.(c:hes o(h)-0') |=A) = (0;: h s o(h) - 6;) |= C, where
Qi = Qs, and Qy, = Q;.

Soundness of the sequential composition rule

Theorem 7.43
The sequential composition rule 7.16 is sound.

Soundness of the parallel composition rule

Theorem 7.44
The parallel composition rule 7.17 is sound.

““1
yd
™

75t

Theorem 7.45

= (4,C) - {0} P{y} =+ (4,C) : {9} P {v}.

The proof of this theorem proceeds by induction on the structure of program
P. First we discuss the structure of this proof.

Given program P and restrictions on the environment consisting of an as-
sumption A and a precondition ¢, we will construct the strongest postcondition
w.r.t. @, A and P, and the strongest commitment w.r.t. ¢, A and P, in order
to characterise precisely all reachable states of P which are consistent with
the environment specified by A and @, and all possible traces of P which are
consistent with that environment.

These two kinds of predicates will be used for constructing A-C-inductive
assertion networks for basic transition diagrams. For given precondition ¢,
assumption A and basic synchronous transition diagram B, they allow us to
generate the A-C-inductive assertion network Q (A,SC(¢,A,B)) w.r.t. assump-
tion A and strongest commitment SC(¢,A, B), by associating with each node /
of B the strongest postcondition SP;(¢,A, B). That this yields an A-C-inductive
assertion network will be established in Lemma 7.49 below, and allows one to

apply the basic diagram rule 7.11, after which some applications of the conse-
quence rule yield the desired result.

To establish completeness for composite systems P one proceeds induc-
tively. In this part we shall apply the usual notion of strongest postcondition
SP(¢,A, P) generalised to our setting.

The simple case is that of sequential composition: P = P;; P>.

Here the induction hypothesis will be used to prove:

(i) completeness w.r.t. @ and A for P;, and
(if) completeness w.r.t. SP(¢,A,P;) and A for P,

after which the sequential composition rule will be applied to establish
= (A,C) : {0} Pi; P, {SP(SP(9,A,P1),A, P)}.

Using that SP(SP(9,A,P;),A,P;) = SP(¢,A, P;; P;) holds as usual, the result
then follows from Lemma 7.53 (ii).

3.58

The most interesting case is P = P;||Ps.
The problem here is that when

F (A,C) : {o} P1||P> {w}

holds, in general C cannot be equivalently expressed as C; A C,, and, similarly,
W cannot be written as y; A ya, where C;,y;,i = 1,2, satisfy the restrictions
imposed in the parallel composition rule.

As a result, the A-C formulae which can be proved directly using this rule
are too weak. In fact, a second rule, the prefix-invariance rule, is needed to
overcome some of these limitations. This can be seen as follows.

One restriction mentioned in the parallel composition rule is that

Chan(A;,C;, i) NChan(Pj) C Chan(PR,), i # j,i,j = 1,2,

i.e., A;, C; and y; do not involve channels of P; which are not connected to P;.
In general, this rule only allows us to deduce commitments of the form C; AC,
and postconditions of the form y; A y,. However, when C; and y; refer to a
channel D of P; which is not connected to P5, and C; and W5 to a channel E
of P, which is not connected to Pj, the relative order to the communications
over D and E prior to execution of Pj||P, cannot be expressed this way (this
order may have been referred to in @). It is here that the application of the
prefix-invariance axiom is crucial to establish completeness.

Another problem arises from the fact that, as remarked previously, valid-
ity of A-C formulae embodies an induction argument (this has been worked
out in [ZdBdR84]). This, together with the fact that = ANC; = A}, i # J,
i,j = 1,2, occurs in the premise of the parallel composition rule, suggests a

mutually recursive relationship between C; and A, whose explicit expression
would considerably complicate proofs. To get around this problem a purely
combinatorial trick is used, which is based on the assumption-closure rule,
and on Lemma 7.55, which captures this recursive dependency between C;
and A; as a property of the underlying data domain, which on the level of our
completeness proof can be incorporated using the consequence rule.

As a consequence, the case P = Pj || P, of our completeness proof has a rather
combinatorial flavour.

?.

L4

Definition 7.46 Forl # s,

SP,(9,A,B) = {c|300,0",6.(c0,0',0) € O)(B)

Ao = (0" :h~ op(h)-0)

AGo [EQAVE <8.(00:h og(h)-0') = A}
SP(¢,A,B) = {o| o = ¢}

Definition 7.47

SC(9,A,B) = {c| 31,60,0,0.(00,0",0) € O;(B) Ac(h) = Go(h) -0
NGy = @AVE' <0.(00 : h— op(h)-0') = A}

Note that SC(¢,A, B) is indeed a trace predicate.

O

O

2

Lemma 7.48
(i) = (A,SC(9,A,B)) : {0} B {SP(9,A,B)}.
(ii) = (A,C): {0} B{y} =

(@) = SP(9,A,B) = .
(b) E=SC(9,A,B) — C.

Lemma 7.49 SP : [— SP/(¢,A,B) is an A-C-inductive assertion network
w.r.t. A and SC(¢,A,B) w.r.t. B.

After these preliminaries we start with our induction proof of Theorem 7.45
and consider the case that program B is a basic synchronous transition diagram
(L,T,s,t) such that

F(4,C) - {0} B{v}.

For predicates A and ¢ we construct SP; predicates which form by Lemma 7.49
an A-C-inductive assertion network for B w.r.t. A and SC(¢,A, B). Thus we can
apply the basic diagram rule 7.11 and derive

- (A,SC(9,A,B)) : {SP,(9,A,B)} B {SP(¢,A,B)}.

Since by Lemma 7.48 |= SP,(¢9,A,B) — y and |= SC(¢,A,B) — C hold, and
= @ = SPy(9,A,B) by definition of SP;, we derive by an application of the
consequence rule the desired result

={4,C) : {0} B {v}.

This establishes completeness in the sense of Theorem 7.45 for basic syn-
chronous transition diagrams.

Strongest postcondition and strongest commitment for composed programs
We adapt Definitions 7.46 and 7.47 to the semantics of Definition 7.30.

Definition 7.50

SP(9,A,P) = {c|3060,0",0.(00,0",6, T) € O[P]
NG = (0 :hw og(h)-0)
ANOo EQAYE <0.(0o:h—oo(h)-6)=A}. O

Remark 7.51 For a basic diagram B we have = SP,(¢,A,B) < SP(p,A,B).

Definition 7.52

SC(9,A,P) = {c|300,0",6,1.(00,0',6,7) € O[P]
AG(h) =oo(h)-0
NGy [FQAVE <6.(co:h—0o(h)-0)EA}. O
The strongest postcondition SP and strdngest commitment SC satisfy the
following properties:

Lemma 7.53
() |=(A,SC(9,A,P)): {0} P {SP(¢,A,P)}.
(i) F(A,C): {o} P {y} =
(@) = SP(9,A,P) = .
(b) = SC(9,A,P) > C.

Proof Similar to that of Lemma 7.48. O

745

	mskann0001.pdf
	mskann0002.pdf
	mskann0004.pdf
	2pages.pdf
	skann0003.pdf

