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10.4 A Proof System for SVL Programs
Observe that. by applying the rules for assignment,
{x=0vy=2}xi=x+1{x=1vx=3}
and
{r=0vx=ljxi=x+2{x=2vr=3)

are proof outlines. To prove interference freedom of these, we have to prove
the verification conditions generated by the following four assignments:

. {(.t'——-O\/_t':E)/\(l.:O\/t—l}!c—\-i—l{\_UV\—I}
. {(.x'z(]\/.\'zz}/\(,l:'?\/1—1}x—1+1{x:’\/\—3}
e {(x=0Vx=1)A(x=0Vx=2}x:=x+2{x=0Vx =2}, and
e {x=0Vx=DA(x=1 \M—-3}x—1’+2{\“1\/r—3}

These formulae follow from the guarded-assignment rule. By applying the
parallel composition rule we obtain the following proof outline:
{x=0vx=2)A(x=0Vx=1)}
[ {x=0vx=2}x:=x+1{x=1vx=3}
| {x=0vx=1}x:=x+2{x=2vx=3}
J{e=1va=3)AE=2vi=3)}.
Since
Fx=03(x=0vx=2)A(x=0vx=1)
and
E=1Vx=3)A(x=2Vx=3) 3x=3,
we can extend this to a proof outline of the form:
fx=0}
{(x=0Vx=2)A (x=0vx=1)}

{(x=1Vx=3)A (x=2vx=3)}
{x=3}.

By applying the consequence rule, we can transform this into the desired Hoare
formula: F{x =0} ([x:=x+1 || x:=x+2]) {x=3}. O
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Example 10.15 As the next example consider { [x:=x+1 || x:=x+1]). The
aim is to prove {x =0} [x:=x+1 || x:=x+ 1] }{x = 2}. Analogous to the
previous example, we first have to try using the proof outlines

{x=0Vx=l1}x:=x+1{x=1Vx=2}

and
{x=0Vx=l1}x:i=x+1{x=1Vx= 2}.

These proof outlines, however, are not interference free. For instance, {(x =
Ovx=DAG=0vVx=1}x:=x+1{x=0Vx=1}isnotvalid. A second
problem is that the conjunction of the postassertions (x = 1Vx=2)A{x=1V
x = 2) does not imply the desired postassertion x = 2. As proved in Example
312 within the context of the inductive assertion method, it is even impossible
to prove {x = 0}x:=x+1 || x:=x+1{x =2} by making use of assertions
whose only free variable is x. This proof carries over to the present framework.
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Definition 10.13 (Auxiliary variables)

Consider a program Sy. Let A C var(Sp). where var{Sg) denotes the set of
variables that occur (within assignments and boolean tests) in §;. We call A a
set of auxiliary variables of Sy if the following conditions are satisfied:

e Each variable from A occurs in Sp only within assignments, that is, it may
not occur within the boolean tests b of guarded assignments and guarded
commands.

o When it occurs in an assignment xj,... X, 1= €},....€, it does so only
within its components (x;,¢;) when x; € A. In words: a variable from A
cannot be used in assignments to variables outside A. O

Next we present a version of the auxiliary-variables rule. Note that the
premise of the rule has the form of a proof outline, whereas its conclusion
is a Hoare formula.

A PRV OWTLINE FiR S,
Rule 10.6 (Auxiliary variables) /

{pHA(S0) {a}
(P} (5) {a)

where, for some set of auxiliary variables A of Sy with AN var(g) = 0, program
S results from Sy by deleting all assignments to the variables in A, and, in case
this results in skip statements, dropping the latter.
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a solution to this problem is the use of auxiliary vari-
ables. In our example we can use, for instance, two auxiliary variables donel
and done2, which record whether the assignment has been performed in, re-
spectively, the first or second process.

Now consider the following proof outlines:

{~donel A (—~done2 — x = 0) A (done2 — x = 1)}
x,donel :=x+ 1,true
{donel A (~done2 — x = 1) A(done2 — x =2)}

and

{—~done2 A (—~donel — x = 0) A (donel — x = 1)}
x,done = x+ 1,true
{done2 A\ (—~donel = x = 1) A (donel = x =2)}.

These proof outlines are interference free. For instance,

{~donel A (—~done2 — x =0) A(done2 — x = | )A
~done2 A (~donel — x = 0) A (donel - x=1)}
x.donel := x+ 1.true

{~done2 A (~donel — x = 0) A (donel = x=1)}

is valid, since its precondition is equivalent to ~donel A ~done2 Ax = 0.




2.3

Con-
sequently, we can apply the parallel composition rule. We also introduce an
initialisation of the auxiliary variables, and obtain the proof outline below.
where we have used the following abbreviations:

P & ~donel A (—done2 — x = 0) A (done2 = x = 1)

p2 = —done2 A (~donel — x = 0) A (donel — x = 1)
g1 = donel A (~done2 — x = 1) A (done2 = x =2)

g> = done2 A (~donel — x = 1) A (donel = x = 2).
The proof outline is given by

{r=0}

donel ,done2 := false false :
{p1Ap2}

[ {p1}x.donel :=x+1.true {q}
| {p2} x,done2 := x+ 1.true {g}
| {917 g2}

fe=21

By the auxiliary variables rule we obtain

F{x=0K[r:=x+1[ x:=x+1]){x=2}. .




