
Software-Praktikum

WS97/98

Veranstaltungsnummer 8712

Prof. Willem-Paul de Roever

Lehrstuhl Softwaretechnologie

Christian-Albrechts-Universit�at zu Kiel

Institut f�ur Informatik und Praktische Mathematik

Preu�erstr. 1-9, D24105 Kiel

e-mail: wpr@informatik.uni-kiel.de

http://www.informatik.uni-kiel.de/inf/deRoever/SoftTech/

Scope of Software Engineering

Software errors and their consequences

� The $0.00 bill

� The Strategy Air Command alert november 1979 when

the WWMCS (world-wide military monitoring command

and control system) computer reported inability to

distinguish between real and simulated missile attacks.

Could have brought the world to an abrupt end

� The Therac-25 catastroph

� Patriot missile's timing error during the gulf war

1

� Software is being delivered full of faults, late and

out of budget.

� Software Engineering is an attempt to solve these

problems.

� Software Engineering (SE) is a discipline whose aim

is the production of fault-free software, delivered

on time and within budget, that veri�es the user's

needs.

� The scope of software engineering is broad. It

involves some aspects of:

{ mathematics,

{ computer science,

{ economics,

{ management,

{ psychology.

2

Historical Aspects

� Software Engineering has been coined as a term

in 1967 in the belief that software design,

implementation and maintenance could be put

on the same footing as traditional engineering

disciplines.

� Is originated from the occurrence of the

software crisis, namely, that the quality of software

was generally unacceptably low and that deadlines

and costs limits were not being met.

� The fact that the software crisis is still with

us tells us that the software production process

has is own unique properties and problems, which

are di�erent from these in traditional engineering

disciplines.

3

Mayor Di�erences Between Software

Engineering and Traditional Engineering

Disciplines

Attitude to collapsing

� A collapsed bridge has to be redesigned and rebuilt.

� An operating system (OS) crash is usual (specially

in case of Windows 95) and very rarely triggers an

immediate investigation in its design: Just reboot !

Attitude to maintenance

� Maintaining a bridge leads to replacement of a very

limited number of its parts (road repair, painting,

repairing minor cracks, etc.)

� Maintaining an OS may lead to 50% replacement

of its source code on a 5-year period, specially if

ported to new hardware. This may even lead to a

completely new design.

4

Their mathematical foundations: One may say the

mathematical foundations of building a system are

known when one can predict its behavior.

� Bridges are built to withstand any anticipated

condition. Environmental in
uences to a bridge are

well{studied and understood; Mathematical models

exist.

� It is hard to predict the environment in which the

computer program will be executed. One also has

to consider absence of some desired behavior.

� This led to constructing the system fault-tolerant

- capable of resisting certain classes of errors

regardless of when and where they occur.

� Why after 50 years, the basic mathematical laws

modeling OSs ARE NOT KNOWN ?

Because their basic building blocks, their hardware,

grows COMPLEX FASTER THAN WE CAN

MASTER.

5

The Object-oriented Paradigm

� Since 1967 a variety of techniques have been

introduced to help solve the software crisis

� Mayor breakthroughs

1. Between 1975-1985: The structured paradigm

(SP), essentially based on stepwise re�nement -

a technique for decomposing large problems into

smaller, more tractable problems

2. 1985 - : The object-oriented paradigm (OOP)

6

Structured Analysis and Design

� Based on graphical representation and stepwise

re�nement

� Successful for products up to 50.000 lines of code.

Modern systems however count � 5 � 10

6

lines of

code

� Introduction of the SP within industry was a mayor

reason for the world-scale adoption of SE practices

� Decomposition techniques in stepwise re�nement:

*** either relate to re�ning data or

*** to re�ning actions

but not to both simultaneously.

7

The Object-oriented Paradigm

Data and actions are simultaneously considered

Example

� Consider the object "account balance" with 3 operations:

deposit, withdraw and determine balance

� In the SP these operations are modeled by procedures which

operate on the internal representation of accounts, and this

internal representation is KNOWN THROUGHOUT THE

WHOLE PROGRAM.

� In the OOP this representation is NOT known outside the

declaration of the object. To execute these operations

corresponding messages are sent to the object.

8

Consequences of the OOP

� Regression faults (Making a change to one part

of a product causes other part to fail) occur less

frequently

� Changes of representation are much easier

{ only declarations of objects must be changed

{ while in SP the WHOLE PROGRAM MUST BE

SCANNED FOR CHANGES

� Everything in the product relating to the portion of

the real world which is modeled by the object can

be found in the object itself: encapsulation

9

Summary

� A product designed using SP is essentially a single

unit

� A product designed using OOP consists of many

smaller INDEPENDENT units.

� Consequently, OOP reduces the level of complexity

of a product and simplify both its development and

its maintenance.

10

Introduction to Software Engineering as

a Technique

11

Introduction to the Software Process

� The software process (SP) is the way we produce

software.

� It starts with concept exploration and ends when

the product is �nally decommissioned.

Software Life Cycle

� The series of steps that software undergoes, from

concept exploration to �nal retirement, is called its

life cycle.

� Until the end of the 70's most organizations

produced software using the waterfall model; this

consists of 8 phases:

12

� The SP also includes: (a) Tools and techniques

used to develop and maintain software. (b) The

software professionals involved.

� Newer software life cycle models which will be

discussed include:

1. Rapid Prototyping,

2. The incremental model,

3. The spiral model.

� Techniques for software production must be

cost{e�ective and promote constructive interaction

between the members of the software team.

13

Software Life Cycle

� Client generally does not have the necessary

expertise for developing the software, so he/she

calls in software developers.

� During the requirements phase, the developers

work with the client to determine precisely

what software the client needs (this is called

system analysis.)

� Once the client's needs have been determined, the

next phase is to draw up the speci�cation document

that will re
ect exactly what the product is to do.

� Next, the developers plan the entire

software development project answering

how long it will take, how much it will cost,

how many software professionals are involved, and

what are the schedules and deadlines.

14

� Then comes the design phase. Whereas the

speci�cation phase describes what the product is to

do, the design document describes how the product

will do this. To that e�ect the product is broken

down into smaller components, called modules, and

then each module is designed on its own.

� After completion of the design phase, the design

is implemented in the language determined in

the speci�cation document. This is called the

implementation phase. Each module is coded and

tested, then they are linked together to form the

complete product, which is tested as a whole { this

is called integration. This phase ends when the

product passes its acceptance test, i.e. the client

agrees that the product satis�es its speci�cation.

� Any later change to the product is called

maintenance.

15

� Maintenance takes 2/3 of the software production

budget. Consequently, any technique for shorting

and improving maintenance decreases that budget

by a much higher factor than any improvement to

the other phases.

� Corrective maintenance: removal of remaining

faults (� 20% of maintenance)

� Enhancement: adding or changing of features

� Bad products are thrown away. Good products are

maintained for sometimes 20 years.

16

The Role of Testing

� Testing is a systematic process which aims at �nding faults in

the program.

� Fault: an incorrect step, process or data de�nition. Sometimes

called a bug.

� There are 2 types of testing associated with every phase:

during the phase by the software development team. and after

the phase by the Software Quality Assurance Team (SQA)

team.

� The SQA team performs the veri�cation of each phase.

� Validation takes place after the whole product has

been developed and before acceptance testing: It is

the activity by the SQA team that determines whether

the product as a whole satis�es its speci�cation document.

� Testing is equally important during maintenance.

� Mayor problem: Making a change to one part of a product

causes another part to fail | regression fault

� One has to ensure that new features function correctly but

also that they do not a�ect the old one.

17

Relative Costs of a Fault

Reasons why later changes during life cycle cost more:

� easier to change an item in a speci�cation document

� corrections during a later phase enforces change of

documentation in previous phases

� easier to �nd fault during phase in which it was introduced

that after that phase

� without documentation, after faults occur whole process of

speci�cation and design must be reconstructed in order to

obtain a corrected implementation

65% of all faults are due to an incorrect or misinterpreted

speci�cation or requirements document =) These should be

found early !

18

Software Quality Assurance

Recall, the software quality assurance team tests each

phase independently of the development team. Why?

� Easier to �nd our own faults when we show our

results to others

� Potential misunderstanding of requirements and

speci�cation documents, in general, documentation

of the previous phase, are better discovered if

somebody else looks through the work

19

� There should be a managerial independence

between development and quality assurance team.

That is, development under one manager, testing

under another manager and neither manager should

be able to override the other. Why ?

� Separating V & V from development is called

independent veri�cation and testing.

� Software Quality Assurance (SQA) goes one step

further that it also continuously ensures that the

product is of high quality.

20

CASE Tools

� CASE: Computer Aided Software Engineering

� CASE is concerned with the use of the computer to

assist the software engineer:

{ storing documentation

{ assist in reducing number of of regression faults

during maintenance

{ checking consistency, e.g. that the design

document includes all elements of the

speci�cation document

{ power of computer is limited: it \has" no

intelligence on itself, all its intelligence is

programmed into it

� CASE technology today improves productivity by an

order of magnitude (i.e. a factor of 10)

21

Terminology

� Software: includes

{ speci�cation documents,

{ desing documents,

{ legal and accounting documents,

{ software project management phases,

{ manuals,

{ implementation code

� Software production: consists of 2 phases:

{ software development followed by

{ its maintenance

� Product: a nontrivial piece of code, the result

(product) of the software design process

� System: combined hardware and software

22

� Method: a way of dealing with a complete life cycle

phase

� Technique: a way of dealing with part of a phase

(e.g., code inspection is a testing TECHNIQUE)

� Bug: where is originates from:

23

Team Programming Aspects

DEF. performance{price factor =

time to perform 10

6

additions *

cost of CPU and main memory

� Performance{price factor has gone down with each

succeeding generation by a factor of 10. This has

happened 6 times.

� Consequently, organization can a�ord hardware that

runs large products | to large to be written by one

person within the allowed time constraints

� Consequently, these products are built by teams

� Now, it is not the case that if one person can perform

a task in 12 months, 3 people can perform it in 4

months. This is due to the overheads imposed. (A

manager is required for 4 people.)

24

� In general 2 kinds of problems must be overcome:

{ Team programming leads to interface problems

among code components and communication

problems among team members

{ Unless the team is properly organized an

inordinate amount of time is wasted on

conferences between team members.

� Consequently, techniques must be developed

ensuring that teams are properly organized and

managed.

� The correct functioning of the team is the duty of

its manager.

25

Case Study

This book is constructed around a case study. In

1987, Samuel Chesterton made a mayor discovery,

namely that while chocolate{coated ice cream and

chocolate{coated almonds are both delicious, neither

can be compared to chocolate{coated chocolate. He

immediately opened a factory in Mossbook, New York,

to manufacture chocolates that he proceeded to coat

with layer upon layer of di�erent types of chocolate.

The venture succeeded beyond all expectation.

Within �ve years, the Chocolate-Coated Chocolate

(C{CC) Corporation had expanded to 27 shops

selling Chesterton's chocolate{coated chocolates.

Unfortunately, for the past two years C{CC has been

losing money. Mr. Chesterton calls in Arabella

Swinson, an internationally recognized management

consultant who suggests that C{CC should implement

management{by{objectives. That is to say, each

shop is assigned a sales target for each month. The

manager of the shop then encourages every employee

to reach that target. Despite the simplicity of the

26

technique, it has worked time after time in a variety

of situations, and Arabella assures Mr. Chesterton it

will do the trick at C{CC.

In order to keep track of how well each shop is

performing relative to its sales target that month

Mr. Chesterton decides to engage Essares Software

Engineering in order to computerize the management{

by{objectives scheme. What happens next is described

in detail in the succeeding chapters.

27

Term Project

Read the speci�cation document for the ChocAn

software project in Appendix A.

1. There are a number of faults in the speci�cation

document. Can you �nd them ? (Hint: What

happens when a provider no longer wishes to supply

services to ChocAn members? Also consider the

implications of deleting a member record.)

2. A computer auditor would be unhappy if the product

were built as speci�ed, because there are absolutely

no �nancial controls. Suggest two ways to improve

the speci�cation document in this regard. (Hint:

Think about the total of the fees to be paid for

all services and the total of all checks. Also, what

about copies of the various reports?)

3. The speci�cation document is incomplete in that a

key item is missing from every report. What is it?

28

