
The Software Process and its Problems

� The software process is the way we produce software.

It incorporates the software life-cycle model, the

tools used, and the individuals building the software.

� Recall transparencies 12 { 16

29

Di�erent organizations have di�erent

software processes

When in case of prestigious projects large �rms do not

carry through one of the approaches advocated in this

lecture course, this tends to reach the news headlines.

30

1. The Ariane V disaster.

Loss: 5 � 10

9

DM at least. A national enquiry

started into its causes; a sign of health of the

French industry!

2. The, at the time new, DENVER AIRPORT

passenger luggage transfer system disaster. Took

one extra year to complete.

Loss: 1:1 Million $ per day in rent!

3. IBM's planned new

passenger aircraft security positioning and

routing management system for the whole of

the U.S. civil airspace { IT NEVER FUNCTIONED.

Loss: 2:5 � 10

9

$.

4. A well-known south-german electronics �rm (by

which several of you will be hired in future).

(a) It took over the locomotive branch of

KRUPP-MAK at Kiel and wrecked it. A separate

31

talk is planned for next week on this disaster.

Initial losses: � 100 million DM.

(b) It tried to build a system for the

electronic surveillance and management of the

entire railway network around the Hamburg-

Altona station. At \delivery" train tra�c with

Kiel from Hamburg broke down entirely. The

Hamburg-Altona station never regained its old

status.

32

Other organizations follow the lines

taught during this course.

Consider, e.g,, the issue of documentation:

� They perform careful design activities, checking and

rechecking designs before coding commences, and

give detailed description of each module to the

programmers.

� Test cases are preplanned, logged, and test data

carefully �led.

� Once the product enters the maintenance phase,

any suggested change must be proposed in writing,

with detailed reasons for the change.

� The change can be made only

with written authorization, and the modi�cation

is not integrated into the product until the

documentation is updated and approved.

33

Phases of the Software Process

� Regardless of the exact procedure, the software

process broadly follows the phases outlined in

�gure 1.1. on transparency 13: requirements,

speci�cation, planning, design, implementation,

maintenance, and retirement.

� Some of these are known by other names:

{ the requirements and speci�cation phases are also

called systems analysis.

{ The maintenance phase is also called

operations mode.

{ The design phase is broken down into:

architectural design (the structure of the software

product) and detailed design (what the modules,

in terms of which the software is structured, do).

34

The Need for Testing and

Documentation

� Recall transparencies 17 and 18.

� In the preceding lines there is NO SEPARATE

TESTING PHASE.

� Testing is not a separate phase, but takes place

all the way through software production, i.e. during

each of the phases:

{ during a phase itself

{ at the end of each phase (veri�cation)

{ before the product is handed out to the client

(validation)

Similarly, there is NO SEPARATE

DOCUMENTATION PHASE.

{ The documentation for each phase of the software

development process must be completed by the

35

team responsible for their phase { BEFORE THE

NEXT PHASE BEGINS!

{ The documentation must always be UPDATED

to reect the CURRENT version of the product.

Why?

1. Postponed documentation is almost never

completed.

2. Individuals responsible for a phase tend to be

transferred or leave the �rm.

3. During development, the product is constantly

changing.E.g., its design is normally modi�ed

during the implementation phase (due to

new info). UNLESS its design has been

fully documented, modifying the design is

EXTREMELY DIFFICULT.

4. It will be extremely di�cult for the original

designers to document their design AFTER

modi�cation if no original documentation exists.

36

Software Life-Cycle Models

� The separate phases of the software life cycle model

often does not progress in the order suggested in

�g 1.1 on transparency 13.

� The order and the extent in which these separate

phases are carried out di�er according to the various

software life cycle models adopted.

These are:

{ The build-and-�x model. This naive and stupid

model is used by any programmer in his youth;

37

when adopted by a �rm it ALWAYS leads to

DISASTER.

{ The waterfall model. Characterized by a strict

separation of phases until faults are discovered.

Then backtracking takes place to previous phases

until the earliest occurrence of those faults are

localized, correction has taken place and the

process is continued iteratively.

{ The rapid prototyping model. Discussed below.

It consists of building a working model displaying

the same functional (I/O) behavior as a subset

of the software product.

{ The incremental model. Characterized above in

the \Just in Case: : : Box" by \Specify some,

design some, code some, then specify some more,

design some more, and so on."

{ The spiral model. Characterized by also planning

minimal (�nancial) risk via the extended use of

prototypes and other means.

38

Client, Developer, User

� The client is the individual organization who wants

a product to be developed.

� The developers are the members of the organization

responsible for producing the product.

� The user is the person or persons on whose behalf

the client has commissioned the product and who

will utilize the software.

� If client and developers belong to the same �rm this

is called internal software development.

� With contract software, client and developers belong

to totally di�erent organizations.

39

Requirements Phase { Characterization

And Di�culties

Characterization:

� Software development is expensive.

� At any stage of the process, if the client

stops believing the system is cost e�ective,

development will immediately terminate. Below we

assume that the client feels this cost is justi�ed.

� At the initial meetings { called concept exploration

{ the client outlines the product as he or she

conceptualizes it.

� However, from the developers' viewpoint, the

client's description may be vague, unreasonable,

contradictory or impossible to achieve.

40

THE TASK OF THE DEVELOPERS DURING THIS

PHASE IS TO FIND OUT EXACTLY WHAT THE

CLIENT REALLY NEEDS and which constraints exist.

� E.g., the product should cost less than $ 370.000

and should be completed within 14 months.

� Other constraints are reliability (the Siemens

locomotives ordered by Norway should be

operational 97% of the time), and size (should

�t on a personal computer).

� In subsequent meetings between members of the

development team and the client team, the

functionality of the proposed product is successively

re�ned and analyzed for technical feasibility and

�nancial justi�cation.

41

Di�culties During the Requirements

Phase

What happens when the requirement phase is carried out

improperly?

� After delivery of the product the client calls the

developer and says: \I know that this is what I

asked for, but it isn't what I really needed."

� How can this happen, and why?

� The client may not truly know what's going on

in his or her own organization (Does Kohl know

what really happens in Germany? Did Mercedes-

Benz' director know his test-drivers fooled him when

testing model A?).

� E.g. is does not make sense to ask for a faster

operating system if the cause of bad response time

is a badly designed database.

42

The Need For Rapid Prototyping

� The MAJOR REASON that the client so frequently

asks for a wrong product is that

SOFTWARE IS SO HORRIBLY COMPLEX !

� If it is di�cult for a developer to have a model

of software and its functionality, how much more

di�cult is it for the client who is a computer

illiterate?

� One way of dealing with this problem is:

rapid prototyping.

� A rapid prototype is a piece of software hurriedly put

together that incorporates much of the functionality

of the target product, yet omits those aspects

generally invisible to the client (s.a. �le updating,

error handling).

� Client and users then experiment with the

43

prototypes to �nd out whether it meets his or her

needs, indeed.

� The rapid prototype can then be changed until

client and users are satis�ed that it encapsulates

the functionality they desire.

� You will appreciate the di�culties encountered

during the requirement phase once you have tried

to �nd out what your client really needs in case of

your team project.

44

Requirements Phase Testing

� Recall transparencies 19 and 20.

� During the requirement phase the SQA (Software

Quality Assurance) team should assure that the

product satis�es THE ACTUAL NEEDS OF THE

CLIENT (and not what he or she says is needed {

see above).

� Thus, the SQA team must verify with the client

that the �nal version of the rapid prototype is

totally satisfactory.

� Forces beyond control of the development team

may, however, necessitate changes in requirements

WHILE THE PRODUCT IS BEING DEVELOPED:

{ Further development then stops until the required

modi�cations to the partially �nished product are

made.

45

{ This is called the MOVING TARGET PROBLEM.

{ However, the major cause of this problem is a

client who keeps on changing his or her mind.

NOTHING CAN BE DONE ABOUT THIS if the

client has su�cient CLOUT!

46

Speci�cation Phase { Characteristics

And Di�culties

� Once the client agrees that the

developers understand the requirements, the

speci�cation document is drawn up by the

speci�cation team.

� The speci�cation document (or speci�cation(s))

explicitly describes the functionality of the product,

i.e. precisely what the product is supposed to do,

and what \constraints" the product must satisfy.

� It includes all inputs to the product and the outputs

required.

� E.g., in case of a payroll product, inputs must

include pay scales of each employee, data from a

time clock, and information from personnel �les so

that taxes can be computed correctly.

Outputs will be paychecks and reports s.a. Social

Security deductions.

47

� The speci�cation document of the product

constitutes a CONTRACT, and may form the basis

of a lawsuit, for:

� The software developers are deemed to have

completed the contract when they deliver a

product that satis�es the acceptance criteria of the

speci�cation document.

� Thus, the speci�cation document should

NOT include imprecise terms like \suitable",

\convenient", \ample" and \optimal".

� For, otherwise, it cannot support a lawsuit.

48

Di�culties During The Speci�cation

Phase

� Speci�cations may be ambiguous { contain

sentences that may have more than one possible

valid interpretation.

� E.g., consider the speci�cation: \A part record

and a plant record are read from the database. If

IT contains the letter \A" directly followed by the

letter \Q", then compute the cost of transporting

that part to that plant."

To what does "IT" in the preceding sentence refer

to?

� Speci�cations may be incomplete { relevant facts or

requirements are omitted.

� E.g. the speci�cation may not state what actions to

undertake when the input data contains errors.

49

� Speci�cations may be contradictory { i.e.

inconsistent.

� E.g., a sta� document contains the sentence:

\employees working more than 50 hours/week get

extra pay/hour." However, at another place in that

document, it is stated that employees working less

than 55 hours/week get no extra pay/hour.

� SOFTWARE DEVELOPMENT CANNOT

PROCEED UNTIL SUCH PROBLEMS IN THE

SPECIFICATION HAVE BEEN CORRECTED.

� You will appreciate these di�culties once you

have tried to remove the ambiguities, sources of

incompleteness and contradictions from your team

project's description.

50

Speci�cation Phase Testing

� Recall that 65% of all faults in a delivered

product are due to an incorrect or misinterpreted

speci�cation or requirement document.

� Therefore, the SQA group must carefully check the

speci�cation, looking for contradiction, ambiguities

and signs of incompleteness.

� It must ensure that the speci�cation is feasible (e.g.

�ts the clients disc capacity).

� The speci�cation should be testable, i.e., every

statement in the speci�cation document must

be traced to a statement in the requirements

document. This is called tracability. And also

the converse should hold.

51

How is this Goal Achieved?

� Checking the speci�cation document is done by

means of a REVIEW during which speci�cation

team and the client are present.

� The reviewers go through the speci�cation

document ensuring that that there are no

misunderstandings about the document.

� There are two types of review:

{ Walkthroughs, and

{ Inspections.

These vary from each other in degree of depth.

52

Walkthroughs and Inspections

� Members of the walkthrough team should be

experienced senior technical sta� because they tend

to �nd the important faults.

� Each reviewer should study the material and develop

two lists:

{ Of the items the reviewer does not understand.

{ Of the items the reviewer believes are incorrect.

� An inspection goes far beyond a review and has 5

formal steps:

1. An overview phase: an overview of the document

is given.

2. During the preparation phase, participants try to

understand the document in detail.

3. During inspection, it is ensured every item is

covered and every branch taken at least once.

Fault �nding commences. A written report is

produced of all �ndings.

53

4. During the rework phase, the individuals

responsible for the document resolve all faults

and problems raised in the written report.

5. In the follow-up phase, the moderator

ensures every single issue raised

has been satisfactorily resolved and

no new faults have been introduced.

� IF MORE THAN 5% OF THE MATERIAL HAS

BEEN REWORKED, THE TEAM RECONVENES

FOR A 100% INSPECTION (as a further guarantee

that no new failures have been introduced).

54

Planning Phase { Characteristics

1. No client authorizes a software project without

knowing HOW LONG THE PROJECT WILL TAKE

and HOW MUCH IT WILL COST.

� This is equally important from the developer's

viewpoint because:

{ If the developers underestimate the cost of a

product, the client pays the agreed fee and the

developers' �rm loses money.

{ If the developers overestimate this cost, the

client may turn the project down or go to

another software �rm.

� Similar issues hold for the duration estimation of

a project.

2. The developers need to assign appropriate

personnel to the various development phases,

i.e the developers MUST PLAN AHEAD. A

software projects management plan { SPMP { is

drawn up, reecting:

55

� deliverables (what the client is going to get).

� milestones (when the client gets them).

� budget (how much it will cost).

3. The SPMP includes:

� Life-cycle model used

� Organizational structure of development team

� Who is responsible for what

� Managerial objectives or priorities (delivering on

time and/or correctness of the product)

� Detailed schedules, budget resource allocation)

4. Planning phase testing is done by reviewers similar

to those of the speci�cation document.

56

Design Phase { Characteristics

� The speci�cations spell out WHAT the product is to

do. The design phase determines HOW the product

does this starting from the speci�cation document.

1. The internal structure of the software product is

determined

2. Algorithms are selected

3. Data structures are chosen

4. Inputs to and outputs from the product are

determined

� Now the internal data ow can be determined.

� More precisely:

{ The product is decomposed into modules

(independent pieces of code with well-

de�ned interfaces to the product).

An object is a preferred kind of module.

57

{ For each module, its designer speci�es

what is has to do and how it does this.

{ The interface of each function within the module

(i.e. arguments passed to and supplied by the

function) are speci�ed in detail.

� E.g., a function measures the water-level in a

reactor and causes an alarm to sound if the

level is too low.

� During decomposition, the design team

keeps a careful record of the design decisions made,

because of the following reasons:

1. During design, there will be times when a

dead end is reached. Making a record of the

design decisions helps to backtrack upon them

and redesign certain pieces.

2. Maintenance. Designers have to compromise,

putting together a design that can be extended

in many reasonable ways without the need for

redesign.

� In a product that undergoes major enhancement

(recall 50% of a good product may be changed

58

within 5 years), time will come when its

design SIMPLY CANNOT HANDLE FURTHER

CHANGES. Then it is time to REDESIGN the

product.

If the redesign team has a record of the reasons for

all original design decisions, its job will be easier.

� Major output of the design consists of two parts:

{ architectural design { a description of the product

in terms of its modules,

{ detailed design { a description of each module;

these descriptions are subsequently given to the

programmers for implementation.

59

Design Phase Testing

� Every part of a design should be linked to a

statement in the speci�cation document.

� Moreover, every statement in the speci�cation

document should be reected in the design.

� Design reviews are similar to the reviews

speci�cations undergo.

60

Implementation Phase

� During the implementation phase, the various

modules of the design are coded into the

programming language speci�ed in the speci�cation

document.

� The major source of documentation is the

source code itself, suitably documented.

� The programmer should also provide additional

documentation to assist in the maintenance phase

in regression testing. This documentation consists

of all the test cases against which the code was

tested, the expected results and the actual outputs

produced.

� Modules should be tested by the programmer

him/herself while they are being implemented {

called desk checking { and after they have been

implemented they are run against test cases. A

61

code review is a powerful method for detecting

programming faults. Here the programmers explains

his code to the SQA team, the review being similar

to those discussed in case of the speci�cation and

design phases.

62

Integration Phase { Characteristics

� The next stage is to combine the implemented

modules and to determine whether the product as

a whole functions correctly, i.e. satis�es the needs

laid down in the speci�cation document.

� Later on it will be described why implementation

and integration are no separate phases but should

be performed in parallel. Basically this is to detect

and eliminate faults as soon as possible.

63

Integration Phase Testing

� First integration testing is being performed: this is

the name for checking that the modules combine

correctly to achieve a product that satis�es its

speci�cations. In particular the module interfaces

are checked, i.e. whether number, order and types

of formal parameters match the number, order and

types of the actual parameters. (In a fully typed

language this is done by the compiler and linker.)

� The product testing is carried out: This consists of

3 phases:

{ The functionality of the product as a whole is

tested against the speci�cation document. E.g.,

whether the constraints listed therein, s.a.

maximal response time, are satis�ed.

{ Then the robustness of the product is tested,

by submitting intentionally erroneous input data

to determine whether the product will crash

64

or whether its error-handling capabilities are

adequate.

{ Finally the documentation and source code are

tested for completeness and internal consistency.

� Last but not least, the software is delivered for

acceptance testing to the client, who tests the

software on the actual hardware using actual data,

as opposed to test data.

{ There is a signi�cant di�erence between test

cases, which by their very nature are arti�cial,

and actual data.

{ Therefore, a software product cannot

be considered to satisfy its speci�cations

UNTIL THE PRODUCT HAS PASSED ITS

ACCEPTANCE TESTS!

� Sometimes, earlier versions of the complete product

are shipped to the client for testing on site { this is

called alpha testing.

{ The corrected alpha version is called the

beta version and is usually close to the �nal

product.

65

Maintenance Phase { Characteristics

� Once the product has been accepted by the client,

any changes constitute maintenance.

66

� Because maintenance measures 67% of the

entire software production process, THE ENTIRE

SOFTWARE DEVELOPMENT EFFORT MUST

BE CARRIED OUT IN SUCH A WAY AS TO

MINIMIZE THE IMPACT OF THE INEVITABLE

FUTURE MAINTENANCE.

{ E.g., the design should, as much as possible, take

future enhancements into account and coding

should be performed from the same point of view

of future change.

67

Maintenance Phase { Testing

� There are two aspects to the testing of changes in

operations mode.

{ The �rst is that the required changes are correctly

implemented.

{ The second is that no other inadvertent changes

in the product result because of negative

interaction with the unchanged parts of the code.

Testing this is called regression testing.

� The need for regression testing explains why it is

necessary that all previous test cases be retained,

together with the results of running them.

68

