
DESIGN PHASE, II: Detailed Design

This part of the lecture is based on chapter 7

of Schach's \Practical Software Engineering". Its

objectives are listed below:

� Realize the importance of detailed design

� Appreciate the advantages and disadvantages of

using pseudo-code and detailed design

� Recall the necessity for continual testing during

product development and maintenance

The �rst step in the design process, OOD, has

been performed. The second step is to re�ne the

components into functions, assign each function to the

appropriate compilation unit, and design each function

in detail. This step is called detailed design and uses

the technique of stepwise re�nement.

232

Detailed Design

The detailed design document is given to the

programming team for implementation, and must

therefore include adequate information for fault-

free implementation.

Thus, not only must the designers specify exactly

what each function is to do and how it is to do it, but

they must also unambiguously de�ne the interface

between the function and the rest of the product.

In order for each function to specify how it is to

carry out its task, the designers must specify the data

structures involved and the algorithms executed by

the function.

Because the detailed design document is usually

presented in pseudo-code, and because pseudo-code is

generally similar in style to the programming language

in which the implementation is to be performed,

the detailed design document usually looks somewhat

similar to the implementation language.

233

So we expect, in case of the C-CC corporation, that it

looks in appearance C-like, Fig 7.1 below presents the

�rst re�nement of function main in C-like pseudo-code.

main()

{

do

{

display menu;

get valid_choice from user;

switch (valid_choice) of

{

case 1: input_new_region_record();

case 2: input_new_shop_record();

case 3: update_region_record();

case 4: update_shop_record();

case 5: delete_region_record();

case 6: delete_shop_record();

case 7: produce_vp_report();

case 8: produce_region_report();

case 9: produce_shop_report();

case 0: quit;

}

} while user selects valid_choice

}

Figure 7.1 First re�nement of detailed design of function main.

234

In no case should the design team produce C-code; the

life-cycle model would revert to the extremely expensive

build-and-�x model. The SQA group can step in if the

detailed design document begins look like a complete

implementation and suggest to the designers that each

function be sketched in pseudo-code, not implemented

in detail.

235

Compilation Unit shop.c

The �gure above mentions nine functions as to be

de�ned. The next step is to decide in which compilation

unit they will be put.

This leads to the �rst re�nement of compilation units

region.c and shop.c as in �g. 7.2 below.

Compilation region.c shop.c

unit

Data

Structure region record shop record

Name

region name (2 chars) shop id (3 chars)

region mgr name (25 chars) mgr name (25 chars)

Data region mgr address (25 chars) address (25 chars)

Structure region mgr city (25 chars) city (25 chars)

Fields region mgr zip (10 chars) zip (10 chars)

region mgr phone (13 chars) phone (13 chars)

region name (2 chars)

input new region record input new shop record

update region record update shop record

Functions delete region record delete shop record

produce region report produce shop report

produce vp report

Figure 7.2 First re�nement of compilation units region.c and shop.c.

Next the functions must be de�ned.

236

Lets start with delete shop record; a re�nement is

given below:

void

delete_shop_record(void)

{

user specifies shop_id of shop to be deleted;

perform shop deletion;

print message to user that shop with given shop_id has been deleted;

}

Figure 7.3 First re�nement of detailed design of function delete shop record.

237

This begs the question how a user speci�es a shop.

leading to the design in �g. 7.4.

void

user_specifies_shop(struct shop shop_record)

{

do

{

do

{

ask user to specify shop_id;

see if the shop with that shop_id is in SHOP_FILE;

if shop does not exist

{

tell user that shop is not in file;

ask user to specify another shop;

}

} while user does not specify shop in SHOP_FILE;

display the shop;

ask user if this is correct shop to be deleted;

} while user replies no;

}

Figure 7.4 First re�nement of detailed design of function user speci�es shop.

In order to de�ne a shop, a struct shop data type is

introduced, of which only �elds mentioned in �g 7.2

are known already. Any other decision is postponed

- that's the guiding principle of stepwise re�nement:

postpone any decision which isn't immediately

needed.

238

Fig. 7.4 de�nes user speci�es shop using 2 loops, one

inner and one outer loop. Such loops are always

di�cult to design properly; absence of desk-testing

usually leads to faults, and also does so in this case {

in case there are no shops in SHOP FILE, the user is

stuck. This fault is discovered during maintenance.

Since the C-CC corporation uses C, it has no random

access �les, only sequential �les. Consequently, one

needs a function reading the shop records one after

another, in shop id order, until the wanted one is

located.

When one �nds the shop sought for, this function

returns the value true, if a record with shop id > the

sought one is found, this function returns false.

239

Such a function is de�ned in Fig. 7.5 below.

int

find_shop (SHOP_ID_TYPE shop_id; struct shop *shop_record_ptr)

{

read shop records one-by-one;

if shop_id matches that of shop record being read

set shop_record_ptr to point to this shop and return TRUE;

if shop_id is greater than that of shop record being read

return FALSE;

}

Figure 7.5 First re�nement of detailed design of function �nd shop.

Next functions read shop records one-by-one and

write shop record are de�ned in �gures 7.6 and 7.7

below.

int

read_shop_record (FILE *file_ptr, struct shop *shop_record_ptr)

{

read from file with pointer file_ptr;

set shop_record_ptr to point to the resulting record;

if end-of-file

return EOF;

else

return 0;

}

Figure 7.6 First re�nement of detailed design of function read shop record.

void

write_shop_record(FILE *file_ptr, struct shop *shop_record_ptr)

{

write record pointed to by shop_record_ptr to file with pointer

file_ptr;

}

Figure 7.7 First re�nement of detailed design of function write shop record.

240

Calling read shop record is done by the following

calling sequence:

main

delete_shop_record

user_specifies_shop

find_shop

read_shop_record

Figure 7.8 Calling sequence of functions designed so far.

241

Now �rst the functions called in �gure 7.8 are designed.

leading to �gures 7.9, 7.10 and 7.11.

void

delete_shop_record (void)

{

struct shop_record;

user_specifies_shop(&shop_record);

perform_shop_deletion(&shop_record);

print message to user that shop with given shop_id has been deleted;

}

Figure 7.9 Second re�nement of detailed design of function delete shop record.

void

user_specifies_shop(struct shop *shop_record_ptr)

{

do

{

do

{

ask user to specify shop_id;

see if the shop with that shop_id is in SHOP_FILE;

if not find_shop(shop_id, shop_record_ptr)

{

tell user that shop is not in file;

ask user to specify another shop;

}

} while user does not specify shop in SHOP_FILE;

display_shop_record(*shop_record_ptr);

ask user if this is correct shop to be deleted;

} while user replies no;

}

Figure 7.10 Second re�nement of detailed design of function user speci�es shop.

242

int

find_shop(SHOP_ID_TYPE shop_id, struct shop *shop_record_ptr)

{

FILE *shop_fp;

open SHOP_FILE with pointer shop_fp;

if SHOP_FILE does not exist

print error message and exit;

set shop_located to FALSE;

while (read_shop_record(shop_fp,shop_record_ptr) is not equal to EOF)

and (not shop_located)

{

if shop_id matches

set shop_located to TRUE;

}

close SHOP_FILE;

return shop_located;

}

Figure 7.11 Second re�nement of detailed design of function

�nd shop. (Design contains a serious fault.)

Actually, a serious fault is made above { in �g 7.11 {

because the functions above aren't properly tested.

The �rst re�nement of �nd shop, �g. 7.5, is still

correct, but the second one isn't.

243

Situation overlooked in �g. 7.11 is as follows:

1. Suppose the SHOP FILE contains 2 records, with

shop id 111 and shop id 222.

2. Suppose we try to �nd shop 111 using �g 7.11

3. The �rst call of read shop record leads to reading

the shop record with shop id 111, so shop located

is set to TRUE.

4. So now the while-statement is executed again!

Hence the read shop record is read a 2nd time

and the loop terminates because shop located is

true.

5. As a consequence the shop record ptr points now

to the record with identi�er 222!!!

6. This fault is corrected in �g. 7.12; check how this

happens!

244

int

find_shop(SHOP_ID_TYPE shop_id, struct shop * shop_record_ptr)

{

FILE *shop_fp;

struct shop temp_record; [added]

open SHOP_FILE with pointer shop_fp;

if SHOP_FILE does not exist

print error message and exit;

set shop_located to FALSE;

while (read_shop_record(shop_fp,&temp_record) is not equal to EOF)

and (not shop_located) [modified]

{

if shop_id matches

set shop_located to TRUE;

set *shop_record_ptr to temp_record; [added]

}

close SHOP_FILE;

return shop_located;

}

Figure 7.12 Corrected second re�nement of detailed design of function

�nd shop.

245

Detailed design case study: two more

functions

Consider again a calling sequence of

delete shop record, see �g. 7.13.

display_shop_record

read_shop_record

user_specifies_shop perform_shop_deletion

find_shop copy_shop_to_temp

write_shop_record

delete_shop_record

Figure 7.13 Structure chart of functions called from function

delete shop record.

To �nish designing this function we design functions

perform shop deletion and display shop record.

246

Deleting a record from a sequential �le s.a. SHOP FILE

uses the �. strategy:

� The �le is copied to, say, a temporary

�le temp shop �le, this is done by function

copy shop to temp in �g. 7.14.

void

copy_shop_to_temp(void)

{

copy the contents of SHOP_FILE, unchanged, to TEMP_SHOP_FILE;

}

Figure 7.14 First re�nement of detailed design of function copy shop to temp.

� Then this temporary �le is sought through, copying

�les di�erent from the �le to be deleted back to

the original �le SHOP FILE, as follows

void perform_shop_deletion(struct shop *shop_record_ptr)

{

copy_shop_to_temp();

while not end-of-file(TEMP_SHOP_FILE)

{

read shop record from TEMP_SHOP_FILE;

if shop_id of this record is not shop_id of

record pointed to by shop_record_ptr

write shop record to SHOP_FILE;

}

}

Figure 7.15 First re�nement of detailed design of function perform shop deletion.

247

� Display shop record is designed

void

display_shop_record(struct shop shop_record)

{

for each field in shop_record

{

print name of field;

print value of that field;

}

}

Figure 7.16 First re�nement of detailed design of function display shop record.

248

Detailed Design case study: a faulty

function

Returning to the �rst re�nement of main in �g 7.1,

now function input new shop record is de�ned, see �g

7.17 for its �rst re�nement:

void

input_new_shop_record(void)

{

struct shop shop_record;

get_new_shop_data(&shop_record);

put_shop_record(&shop_record);

print(``The following shop record was inserted:'';

display_shop_record(shop_record);

}

Figure 7.17 First re�nement of detailed design of function input new shop record.

input new shop record calls get new shop data and

put shop record and display shop record, so

subsequently the of these are de�ned, see �g 7.16,

7.18 and �g 7.19.

void

display_shop_record(struct shop shop_record)

{

for each field in shop_record

{

print name of field;

print value of that field;

}

}

Figure 7.16 First re�nement of detailed design of function display shop record.

249

void

get_new_shop_data(struct shop *shop_record_ptr)

{

for each field in shop_record

{

print name of field;

solicit value of that field from user;

}

}

Figure 7.18 First re�nement of detailed design of function get new shop data.

250

void

put_shop_record(struct shop *shop_record_ptr)

{

FILE *temp_shop_fp;

*shop_fp;

struct shop temp_record;

copy_shop_to_temp();

open TEMP_SHOP_FILE with pointer temp_shop_fp in read mode;

open SHOP_FILE with pointer shop_fp in write mode;

set SHOP_INSERTED to FALSE;

while read_shop_record(temp_shop_fp, &temp_record) is not equal to EOF

{

if(temp_record.shop_id matches shop_record_ptr->shop_id)

and (not shop_inserted)

{

overwrite existing record with same shop_id, that is,

write_shop_record(sop_fp, shop_record_ptr);

set shop_inserted to TRUE;

}

else if(temp_record.shop_id comes after shop_record_ptr->shop_id)

and (not shop_inserted)

{

write_shop_record(shop_fp, shop_record_ptr);

write_shop_record(shop_fp,&temp_record);

set shop_inserted to TRUE;

}

else write_shop_record(shop_fp, &temp_record);

}

[what if the record to be inserted actually belongs at the end of the

file?]

if shop_inserted is FALSE

write_shop_record(shop_fp, shop_record_ptr);

close SHOP_FILE;

close TEMP_SHOP_FILE;

}

Figure 7.19 First re�nement of detailed design of function put shop record.

251

Next turn your attention to �g 7.19; it contains a

serious error. Can you �nd it?

� First copy shop to temp copies SHOP FILE to

temp shop �le

� Secondly, temp shop �le's records are read one-by-

one, comparing the shop id of each temp record to

the shop id of the record to be inserted

� Thirdly, if they match the old record is discarded

and the new one written to SHOP FILE. Else, if

the temp record has a shop id coming after the

shop id of the new record, we've reached the

point of insertion. Otherwise, we reach the end

of SHOP FILE and insert it there.

252

The calling sequence of input new shop record is given

in �g 7.20.

input_new_shop_record

get_new_shop_data put_shop_record display_shop_record

copy_shop_to_temp

read_shop_record

read_address
read_city
read_mgr_name
read_phone
read_sales
read_shop_id
read_state_name
read_zip

write_shop_record

Figure 7.20 Structure chart of functions called from function input new shop record

253

SO WHERE IS THE MISTAKE?

� If there is a shop id match, the old record is

overwritten, but this shouldn't always happen. E.g.,

if shop no. 345 is already in the �le, and a new

shop with 354 should be inserted, AND A TYPING

MISTAKE is made, inadvertedly leading to id 345

having been typed, AN UNINTENDED DELETION

OCCURS.

� Such kind of faults tend to be discovered during

maintenance!

254

Detailed Design Case Study: Reusable

functions

The third function modifying SHOP FILE is

update shop record, see �gures 7.21, 7.22 and 7.23

void

update_shop_record(void)

{

struct shop shop_record;

int field_number;

user_specifies_shop(&shop_record);

do

{

do

{

ask user to specify number of field to be updated;

} while user does not specify valid field number;

change_shop_field(&shop_record,field_number);

display_shop_record(shop_record);

ask user if another field is to be changed;

} while user wants more fields to be changed;

put_shop_record(&shop_record);

}

Figure 7.21 First re�nement of detailed design of function update shop record.

255

Update shop record uses user speci�es shop from �g

7.10

� Then the �eld which must be updated is found out

� Since user speci�es shop calls display shop record,

the details of shop in question are now on screen,

and the user can tell the number of the �led-to-be-

updated.

� Now the function change shop �led is called; see

�g. 7.22

void

change_shop_field(struct shop *shop_record_ptr, int shop_field_number)

{

ask user to specify new value of field with number shop_field_number;

}

Figure 7.22 First re�nement of detailed design of function change shop �eld.

� the changed shop record is now displayed

� Finally this changed record is written to SHOP FILE

by put shop record from �g 7.19.

256

Next the routines reading and displaying shop records

are depicted. For this to make sense �rst the �elds of

the struct shop record are de�ned. A second re�nement

is struct shop's design is given in �g. 7.24.

Data

Structure struct shop

1. shop id (3 chars)

2. mgr name (25 chars)

3. address (25 chars)

4. city (25chars)

Fields 5. zip (10 chars)

6. state name (2 chars)

7. phone (13 chars)

8. target sales (13 x integer)

9. actual sales (13 x integer)

Figure 7.24 Second re�nement of detailed design of shop data structure.

257

Question: why do target sales and actual sales require

13 matches? To prevent errors. C-arrays start with

index 0, so the target sales of May should be stored

in target sales[4]. This leads to faults. So better have

December's target sales referred to by target sales[12]!

258

Next get new shop data is further re�ned, see

�g. 7.25.

void

get_new_shop_data(struct shop *shop_record_ptr)

{

struct shop shop_record;

read_shop_id(shop_record.shop_id);

read_mgr_name(shop_record.mgr_name);

read_address(shop_record.address);

read_city(shop_record.city);

read_state_name(shop_record.state_name);

read_zip(shop_record.zip);

read_phone(shop_record.phone);

set shop_record.target_sales[1 thru 12] to -1; [data not available]

set shop_record.actual_sales[1 thru 12] to -1; [data not available]

ask if users wishes to initialize target_sales for year;

if yes

read_sales(month,shop_record.target_sales) for month 1 thru 12;

*shop_record_ptr = shop_record;

}

Figure 7.25 Second re�nement of detailed design of get new shop data.

259

And the functions that actually read the values for the

�eld, s.a. read shop id are de�ned.

In the header �le (de�nitions.h) the following

de�nitions are needed:

#define shop_id_length 3

Typedef char shop_id_type[shop_id_length +1];

and shop.c contains the de�nition

struct shop

{

shop_id_type shop_id;

...

}

Why do we do this? For reasons of modularity! If

the numbers of characters in shop id changes, only at

one place change is needed!

Why is the identi�er shop id type an array of 4

characters? To terminate every string by the null

character 'n0', and have storage for that { see �g. 7.26

for some of the required de�nitions.

260

Now we turn to reusability. Recall from transparencies

no. 182, 185, 187 and the discussion in last chapter,

the need for reusability { the only way known to reduce

maintenance costs e�ectively!

� Essaress Software Engineering has a reusable

function read digits(result, length) reading a line

entered at a terminal, examining its �rst length

characters and checking whether these are digits.

If so, it returns three characters followed by n0 in

result. If not, the user is informed, an invalid

character is entered, and reentering is possible.

� Similar reusable functions are read alpha (for strings

of alphabetic characters) and read string (for

arbitrary strings).

� Now read shop id, read intg name, read address

and read city are straightforward to program { see

�gures 7.27 to 7.30.

� To complete the list, read state name (which is a

little but more complex), read zip, read phone are

designed. See �gures 7.31, 7.32, 7.33.

261

void

read_shop_id(SHOP_ID_TYPE shop_id)

{

ask user to specify shop ID;

read_digits(shop_id,SHOP_ID_LENGTH);

}

Figure 7.27 First re�nement of detailed design of function read shop id.

void

read_mgr_name(PERSON_NAME_TYPE mgr_name)

{

ask user to specify shop manager's name;

read_string(mgr_name,PERSON_NAME_LENGTH);

}

Figure 7.28 First re�nement of detailed design of function read mgr name.

void

read_address(ADDRESS_TYPE address)

{

ask user to specify shop street address;

read_string(address,ADDRESS_LENGTH);

}

Figure 7.29 First re�nement of detailed design of function read address.

void

read_city(CITY_TYPE city)

{

ask user to specify city name;

read_string(city,CITY_LENGTH);

}

Figure 7.30 First re�nement of detailed design of function read city.

262

void

read_state_name(STATE_TYPE state_name)

{

do

{

ask user to specify state (region) name;

read_alpha(state_name,STATE_LENGTH);

lowercase_to_uppercase(state_name,STATE_LENGTH);

if region is not in REGION_FILE

ask user to specify a state (region) that is on file;

} while user specifies state (region) that is not in REGION_FILE;

}

Figure 7.31 First re�nement of detailed design of function read state name.

void

read_zip(ZIP_TYPE zip)

{

char buffer[BUFFER_SIZE];

ask user to specify first five digits of shop ZIP code;

read_digits(zip,5);

set zip[5] to '-';

ask user to specify last four digits of shop ZIP code (or 0000 if

not known);

read_digits(buffer,4);

copy first four digits in buffer into zip[6 thru 9];

set zip[10] to '\0';

}

Figure 7.32 First re�nement of detailed design of function read zip.

263

void

read_phone(PHONE_TYPE phone)

{

char buffer[BUFFER_SIZE];

set phone[0] to '(';

ask user to specify area code;

read_digits(buffer,3);

copy first three digits from buffer into phone[1 thru 3];

set phone[4] to ')';

ask user to specify the seven digits of shop phone number;

read_digits(buffer,7);

copy first three digits from buffer into phone[5 thru 7];

set phone[8] to '-';

copy next four digits from buffer into phone[9 thru 12];

set phone[13] to '\0';

}

Figure 7.33 First re�nement of detailed design of function read phone.

264

The design for read sales (�g 7.34) calls reusable

function month number to string which converts

month, an integer between 1 and 12, to string format

for display purpose.

Similarly library function gets, for getting the line

input by the user, and atoi (alphanumeric-to-integer)

converting a string to an integer, are used.

void

read_sales(int month, int sales_array[13])

{

char line[BUFFER_SIZE];

char month_string[MONTH_LENGTH];

do

{

month_number_to_string(month, month_string);

ask user to specify sales for month_string;

gets(line);

set sales to atoi(line);

if sales to atoi(line);

set sales_array[month] to sales;

else

inform user that sales (in thousands of dollars) must be an

integer in the range 1 thru 9999;

} while sales specified by user are out of range;

}

Figure 7.34 First re�nement of detailed design of function read sales.

265

Detailed Design Case Study:

Compilation unit region.c

Once compilation unit shop.c is �nished, compilation

unit region.c is easy to design. The �elds of the region

data structure are shown in �gure 7.35 below.

Data

Structure struct region

1. state name (2 chars)

2. region mgr name (25 chars)

3. region mgr address (25 chars)

Fields 4. region mgr city (25 chars)

5. region mgr zip (10 chars)

6. region mgr phone (13 chars)

Figure 7.35 Second re�nement of detailed design of region data structure.

266

What remains to be done in the design

phase?

� The detailed design of the functions producing the

three reports is given in the next chapter as an

application of information hiding.

� The SQA team has to check the design carefully

using a review or inspection (see transparencies 53-

54).

267

