
DESIGN PHASE, III: Information Hiding

Aspects

This part of the lecture is based on chapter 8

of Schach's \Practical Software Engineering". Its

objectives are listed below:

� Appreciate the importance of information hiding

� Learn how to design a product so that aspects that

are likely to change are isolated in a single function

or in a single compilation unit consisting of related

functions

� Discover how to endure that details as to how data

structure is implemented within a compilation unit

are not known outside of that compilation unit.

268



Information Hiding Principle

The term information hiding is due to D.L. Parnas:

If one part of the product is likely to be

changed, then everything related to that

part should be isolated in one function or

compilation unit.

Information hiding is supported best as a method and

as a language \feature" in the OO paradigm:

OO paradigm = abstract data types +

encapsulation + inheritance

However, principles of information hiding are applicable

outside OO world, which is our main focus of interest

in this lecture.

Q: What are the advantages of language support

concerning information hiding?

269



Information Hiding: Motivation

Indeed, we appreciate the IH principle and OO

paradigm, so the question is not whether we should

apply these principles or not, but:

what is a good design in the sense of

information hiding?

A lot of things can go wrong:

� Information hiding concerns design of module

interfaces. Changes in interfaces lead to changes in

related modules: global rather than local changes.

� Maldesigned modules may lead to redundant code:

di�erent functions o�ering same or similar features.

This, in turn, complicates the maintenance.

270



C-CC case study

Suggested modularization is as follows:

� Module shop.c de�nes internal (static) data type

struct shop

� Module region.c de�nes internal (static) data type

struct region

Hence, details are hidden inside modules shop.c and

region.c.

Problem: how to implement mutual dependencies:

features of region module must have information about

shops and vice versa?

Modules o�er access to the information they maintain

via functions. To preserve information hiding, function

interfaces (their arguments and return parameters) are

di�erent from internal data type de�nitions.

271



Exception handling and information

hiding

Inter-module information exchange has to take care of

exception handling, too.

Here the question is: what kind of communication is

reasonable between calling module and called module,

when an exceptional situation is encountered in the

calling module?

Example. Function main() calls

input new shop record() (251) and the latter

calls write shop record(), where an exceptional

situation occurs (e.g. disc full).

� write shop record() terminates the program with

exit().

� write shop record() passes the exception to

input new shop record(), and the latter decides,

what to do.

Q: What are the di�erences in module interfaces?

How to preserve information hiding?

272



C-CC case study: reports

We have decided early in the development phase that

REPORT does not lead to an object. Refer to 224-227

for reasons for that.

Assume that in the maintenance phase, the following

new feature should be implemented:

REPORTS should be collected and

PERFORMANCE DIAGRAMS should be

computed.

Assume, we would like to add a new object REPORT

now.

Q: How to modify the existing design in order to allow

for the new object REPORT?

273



Recall the design so far (�g. 6.8, transparency 227):

Object Data Structure Operations

REGION region record read region record

write region record

delete region record

generate region report

generate

vice-president report

SHOP shop record read shop record

write shop record

delete shop record

generate shop report

Figure 6.8 Object-operations table: third re�nement.

Describe the following components of the new module

reports.c:

� Internal data

� Functions implementing new features: report

collection and performance diagrams

� Changes on existing modules shop.c and region.c

274


