
Implementation overview

In this chapter we will:

� Become aware of some of the potential dangers of

C as an implementation language

� Discover good programming practice in C

� Understand how to organize programming teams

� Appreciate that there are three fundamental ways

of testing code, including code inspections

� Learn about CASE tools for the implementation

phase

275

Drawbacks of C

� C is not a strongly typed language

� C compilers do not necessarily check whether the

right number of parameters is passed

The way out:

� Manual checking of interfaces (both developers and

SQA)

� The use of function declarations

� The use of lint

276

More drawbacks

� Lack of check of array boundaries while referencing

array elements

� Memory access via pointers may cause problems:

{ It is possible to reference an arbitrary computer

memory location. An attempt to access (read or

write) arbitrary locations may lead to problems.

Question: What kind of problems?

{ Memory blocks with no references to them cause

memory leaks

277

On C programming Style

Avoid unreadable code.

Question: What is the meaning of

�value++

(�value) + + or �(value++)?

� Every programmer must write code in such a way

that future maintenance programmers will have no

di�culty in understanding the code

� Every construct that would not be immediately

understood by even a below-average programmer

must be rewritten

� If SQA cannot understand the function easily by

simply reading through it, then the original designers

have not done their job properly

278



Good programming practice

Variable names must be meaningful and consistent.

� Meaningful from the viewpoint of the maintenance

programmer

� Inconsistent names are

{ reg address

{ region record

{ record ptr rgn

{ name of regn

Problem 1 Do the underlined parts stand for

'region'?

Problem 2 'region' should be placed either at the

beginning or at the end of the variable name.

Variable names should be based on one language.

279

Some simple variable naming ideas

� Variable name should contain type information

� Function names should re
ect their behavior w.r.t.

their arguments: for example

conc d(l1; l2)

consumes its arguments (frees the memory of l1

and l2), whereas

conc(l1; l2)

does not do so.

280

On the use of comments

Self-documenting code may exist but it does not

guarantee to be better than well-documented code.

Well-documented code distinguishes between following

kinds of comments

� Prologue comments

� Function comments

� Inline comments

281

Prologue comments

Prologue comments

� Brief description of what the compilation unit does

� Name of programmer(s)

� Date compilation unit was coded

� Date compilation unit was approved

� Where to �nd test data

� List of modi�cations

� Known faults, if any.

282



Function comments

� Function name, brief description what the function

does

� Name of programmer(s), coding date

� List of parameters and their uses

� Files accessed by this function, if any

� Files changed by this function, if any

� Function input-output, if any

� Error-handling capabilities.

When to use inline comments:

� To comment non-obvious code

� To comment subtle aspect of the language.

283

Final remarks of comments

How to link detailed design to implementation?

Each pseudo-code statement is placed between

comments and followed by C-code that implements

it.

The purpose of SQA.

SQA must check the consistency of comments and the

actual code.

Comments and maintenance phase

Comments must be maintained as well.

284

Code layout

� One statement per line

� Proper indentation

� Use blank lines between functions, and in large

functions between big blocks

� If-statements should not be nested to a level deeper

than 3.

� The right use of GOTOs:

{ WRONG: GOTO implements a loop

{ RIGHT: Forward-GOTO implements error

handling.

Some companies use these or similar guidelines as

coding standards.

285

Team organization

How to divide work between teams and within a team

between developers such that the product is delivered

on time and at given cost?

If there is one person-year coding involved, but the

deadline is in 3 months, then why don't assign 4

programmers to accomplish the task?

Why this does not always work?

If one champion crosses the English channel in

8h, how long will it take for 8 champions?

So the question is how to divide a big chunk of work

between teams or between programmers?

Question: What does sharing cause?

Brooks law:

Adding additional personell to a late project

makes it even later.

286



Flat team structure means that every team member

has to communicate with each other team member.

Programmer

Programmer Programmer

New programmer

Figure 9.5 Communication paths.

Chief programmer team is hierarchical team

organization with less communication between

programmers.

Programmer Programmer

Chief programmer

Programmer

Figure 9.6 Programming in team with fewer communication

paths.

287

Testing during the implementation phase

There are three ways of testing during the

implementation phase:

� Black-box

� Glass-box

� Code inspection

288

Testing during the implementation phase

One popular black-box testing technique is equivalence-

class testing.

Example.

A shop is deemed to have achieved its objective

for the current month if the shortfall is less than

or equal to 5%

First, test cases are derived using partitioning:

� shortfall < 5%,

� shortfall = 5%,

� shortfall > 5%.

289

Second, these test cases are complemented with

boundary cases:

� shortfall = 1 (< 5%)

� shortfall = 4 (< 5%)

� shortfall = 5 (= 5%)

� shortfall = 6 (> 5%)

� shortfall = 39 (> 5%)

290



One popular glass-box testing technique is code

coverage.

Which technique is good where?

� Code inspection �nds more interface faults.

� Black-box testing �nds more 
ow-of-control faults.

Recommended application order:

1. Code inspection

2. Black-box

3. Glass-box

291

When to redesign and recode a function from

scratch?

The more faults are found the greater is the

probability that there are still more faults.

Hence after the nth fault a function should be

redesigned!!!

292

CASE-tools in the implementation phase

� upperCASE can translate pseudo-code into C

� indent

� syntax-directed editors.

293


