Introduction and Overview Chapter 1 1

1.1 Operating system

e The software that controls processing, manages resources and
communicate with external devices like disks and printers is called

operating system.

e Operating systems allow multiple users to share the machine
simultaneously, protect data from unauthorized access, and keep dozens
of independent devices operating correctly. The operating system is itself
a program that is executed by the same processor that executes user’s
programs - if the machine is executing a user’s program, the operating

system 1is inactive.

e An operating system ranges to provide reasonably high-level services

with unreasonably low-level hardware.

e Operating systems hides the low-level details of the real machine, and

provide the hight-level services of an abstract machine.

Introduction and Overview Chapter 1 2

1.2 Comer’s approach

Comer’s book is a guide to the design and implementation of layered

operating systems.

It begins with a sample microcomputer and develops every chapter a new

layer illustrating the details with programs.

The design ends with a complete, working system that supports multiple

processes and a file system.

Introduction and Overview Chapter 1 3

1.3 What an operating system is not

e An operating system is not a language or compiler.

e [t is not a command interpreter, in modern system command interpreter

can be chosen by users, or be written to meet their needs.

e An operating system is not library of commands.Modern systems extend
the freedom to replace commands to users so they can tailor the

computing environments according to their individual tastes.

Introduction and Overview Chapter 1 4

1.4 An operating system viewed from the outside

e The essence of an operating system lies in the services it provides to user

programs. Programs access these services by making system calls.

e System calls look like procedure calls appearing in ordinary program, but

transfer to operating system routines when invoked at run-time.

e As a set, the system calls establish a well-defined boundary between the

running program and the operating system.

e They define the services that the operating system provides and the

interface to those services.

Introduction and Overview Chapter 1 5

1.4.1 The Xinu operating system described in Comer’s book
basically:

e reads characters from a keyboard, and displays characters on a terminal
e manages multiple simultaneous computations

e operate timers

e saves files on disk storage devices

e relays messages between programs.

Introduction and Overview Chapter 1 6

1.4.2 The Xinu small machine environment

Xinu runs on a small, slow microcomputer without using external storage

devices.

The entire system is prepared on a larger machine, called a host, and

downloaded onto microcomputer.

To run a program :

e the user compiles it on the host using a cross-complier (a cross-compiler

produces code for the micro)

e combines it with code for Xinu using a cross-loader (a cross-loader
produces an exact memory image for the micro by coping the combining

the compiler’s output with previously compiled for Xinu)

e after a memory image has been produced, a down-loader copies that
image from the host machine into the memory of the micro over a

standard serial connection.

e after the micro memory has been filled, execution proceeds on the micro

independent of the host.

Introduction and Overview Chapter 1 7

1.4.3 Xinu services

Programs running under Xinu access services by calling operating system
routines. For example the system routine putc writes a character on an I/0
device. It takes tow arguments: the device identifier and the character to
write.

In example exl.c a procedure called "main”, written in C, is illustrated.

/* exl.c - main */

#include <conf.h>

* main -- write "hi" on the console

putc (CONSOLE, ’h’); putc(CONSOLE, ’i’);
putc (CONSOLE, ’\r’); putc(CONSOLE, ’\n’);

Introduction and Overview Chapter 1 8

The code on the previous slide produces several conventions :

#include <conf.h> inserts a file of configuration declarations in the

source prograr.

a definition for a CONSOLE, witch usually refers to a terminal

connected to the micro.

i

This program writes four characters to the terminal: "h” , 7 17 |

carriage return, and a line feed. The latter two are control characters.
exl.c is the name of the file.

The comment /* exl.c - main */ gives the name of the file followed

by the procedure defined by the file, in this case main

Introduction and Overview Chapter 1 9

1.4.4 Concurrent processing

e Conventional programs are called sequential because the programmer

imagines a machine executing the code statement-by-statement.

e Operating systems support concurrent processing means that many

computations proceed “at the same time”.

e The most visible concurrency, multiple independent programs executing

simultaneously, is a grand illusion.

e To create the illusion:

— the operating system switch a single processor among multiple
programs, allowing it to execute one for a few thousandths of second

before moving on to another.

— Viewed by a human the programs appear to proceed concurrently.

This technique is called multiprogrammaing.

e Interactive multiprogramming systems are called time sharing systems,
when the policy used to switch the processor around gives all users equal

amounts of CPU time.

e The operating system switches the CPU among many computations

called processes (jobs, tasks)

Introduction and Overview Chapter 1 10

1.4.5 The distinction between programs and Processes

e At any time several processes (computations) may be executing. It may
be that no two of them are executing the same program.

e Since one processor is switched among several processes, one process may

create another; no guarantee is made about their ”speeds” .

e Therefor the system procedures must be designed so that cooperation
between processes proceed correctly, independently of their relative

speeds.

e For example , the code from ex2.c consists of a main program and two

procedures, prA and prB:

Introduction and Overview Chapter 1 11

/* ex2.c - main, prA, prB */

#include <conf.h>

int prA(), prBQ);

resume(create(prA, 200, 20, "proc 1", 0));
resume(create(prB, 200, 20, "proc 2", 0));

while(1)
putc (CONSOLE, ’A’);

Introduction and Overview Chapter 1 12

while(1)
putc (CONSOLE, ’B’);

Introduction and Overview Chapter 1 13

Exploration

The operating system starts up a single process executing the user’s

main program called main().

When one process creates a new one, the original process continues to

execute and the new process begins executing concurrently.

That single process created by the call to create executes a call to system
procedure create, passing the address of prA (and prB as first argument
create’s other arguments identify the stack space for the process created
by create, its priority, the name of the process, the number of arguments,

and the process’ arguments.

Fach call to create forms a new process that will begin executing

instructions at the address specified by its first argument.
Create sets up the process, ready to run, but temporarily suspended.

It returns the process id (an integer that identifies the created process)

of the new process to its caller, the system procedure resume.

resume starts (unsuspends) that process so that it begins executing.

Introduction and Overview Chapter 1 14

The distinction between normal procedure calls and process creation is :
e A procedure call dose not return until the called procedure completes.

e Create and resume return to the caller after starting the process,
allowing execution of both the calling procedure and the named

procedure to proceed concurrently.

In example ex2.c, the first new process prints ’A’ and the second new

process prints 'B’.

e Because processes execute concurrently, the output is mixture of A’s
and 'B’s.

e The process executing the main program exits after the second call to

resume.
Example ex3.c shows :
e Independent programs need not execute independent code.

e A single program begins executing the main program, calling create

twice to start new processes

e both execute code for the same procedure prntr(ch) :

Introduction and Overview Chapter 1 15

/* ex3.c - main, prntr */

#include <conf.h>

* main -- example of 2 processes executing the same code

* concurrently

B
*/
main()
{
int prantr();
resume (create(prntr, 200, 20, ‘‘print A’’, 1, ’A’));
resume (create(prntr, 200, 20, ‘‘print A’’, 1, ’A’));
}
[k -
* prntr -- print a chracter
B
*/
prtr(ch)
char ch;
{
while (1)

putc (CONSOLE, ch);

Introduction and Overview Chapter 1 16

Exploration (1)

Tow processes running concurrently without affection each other. although
they execute the same piece of code.

This shows the notion of process and the notion of program:
e A process consists of code executed by a single process.
e In contrast, processes are not associated with a single piece of code.
e Multiple processes can execute the same code simultaneously.

This shows some hint of the difficulty involved in designing operating

systems:
e cach piece must be designed to operate correctly by itself,
e it must be guaranteed that it dose not interfere with other pieces,

e no matter how many processes execute simultaneously.

Introduction and Overview Chapter 1 17

Exploration (2)

Although processes share code, they usually have some local variables:

e ('reate allocates an independent set of arguments for each process, as

indicated.

e Thus processes are passed different arguments, although executing the

same code.

e The first new process created by a call to create is passed ’A’ as

argument, so it begins execution with formal parameter 'ch’ set to "A’.
e The second new process begins with 'ch’ set to 'B’.

Although these processes execute the same code,they each has its own copy
of ch’, just an recursive invocation of a procedure have their own copy of

formal parameters.

Introduction and Overview Chapter 1 18

The output is a mixture of ’A’s and 'B’s.
This points out another difference between program and process.

A second deference between programs and processes is :

e Storage for local variables and procedure arguments is associated with
the process executing the procedure, not in the code in witch they
appear.

e There for each process has its own stack of:

— local variables
— formal parameters

— procedure calls

Introduction and Overview Chapter 1 19

1.4.6 Process exit

In the above example (ex3.c), the initial process ceased when it reached the

end of the code of the main program; this is referred to as process ezit.

Other processes exit by reaching the end of the procedures in witch they

start (or by returning from it).

Once a process exits, it disappears forever.

e Just like a sequential program, each process has its own stack of

procedure calls.

e Whenever it executes a call, the called procedure is pushed onto the

stack.
e Whenever it returns from that procedure, it is popped off the stack.

e Process exit occurs only when the process pops its last procedure (or

main program) off the stack.
e System call kill(P) terminate process P.

e E.g., a process exits by calling kill(getpid()) (a call to getpid() returns

its process identifier, witch is passed on to k:ll.

Introduction and Overview Chapter 1 20

1.4.7 Shared memory

In Xinu each process has its own copy of :
e local variables
e formal parameters
e procedure calls.

But also processes can share a set of global (external) variables, as it shown

below in example x4.c.
In the code global variable n, it is a shared integer, initialized to zero.

The process executing produce loops 2000 times, increasing n; it is called the

producer.

The process executing consume also loops 2000 times; it prints the value of n

in decimal. We call this process the consumer

Introduction and Overview Chapter 1 21

What happen when ex4.c is run under Xinu ?
Will is print all the values of n ?
Actually, it prints a low value of n, sa 0, and then 2000.

Why?
e Even though the tow processes run concurrently, they do not require the
same amount of time
— the producer is fast
— the consumer quickly fills the available output buffers

— the consumer has to wait for the output device to send characters to

the console

— while the consumer waits the producer runs.

A constraint is :
How can the programmer synchronize producer and consumer, so that the

consumer receive every datum produced ?

e The producer must wait for the consumer to access the datum.

e The consumer must wait for the producer to manufacture it.

Introduction and Overview Chapter 1 22

/* ex4.c - main, produce, consume */

int n=0; /* external variables are shared by all processes*/

* main -- example of unsynchronised producer

* and consumer processes

B
*/
main()
{
int produce(), consume();
resume(create(consume, 200, 20, "cons", 0));
resume (create(consume, 200, 20,"‘prod", 0));
}
[k -
* produce -- increment n 2000 times and exit
K e e e e e e e e e e e e e e e e e
*/
produce ()
{

int 1i;

Introduction and Overview Chapter 1

for(i=1 ; i<=2000 ; i++)

n++;

+

[k -
* consume -- print n 2000 times and exit
K —
*/

consume ()

{

int 1;

for(i=1 ; i<=2000 ; i++)
printf("n is \%d \ n", n);

23

Introduction and Overview Chapter 1 24

Exploration
e In ex/.c global variable n, it is a shared integer, initialized to zero.

e The process executing produce loops 2000 times, increasing n; it is called

the producer.

e The process executing consume also loops 2000 times; it prints the value

of n in decimal. We call this process the consumer
e What happen when ex4.c is run under Xinu ?

e Will is print all the values of n 7
Actually, it prints a low value of n, sa 0, and then 2000.

So: "How can the programmer synchronize the producer and consumer that

the consumer receives every datum produced ?”

Introduction and Overview Chapter 1 25

However this mechanism for implementing this waiting, called

synchronization, should be designed carefully :

In a single processor system,no process should use the CPU while waiting for
another.

Executing instruction while waiting for another process is called busy waiting.
e Xinu avoid busy waiting by supplying primitive called semaphores, and
system calls , wait(s) and signal(s),operate on them.

— The system call wait(s) decrements a semaphore and causes the

process to delay if the result is negative.
— The system call signal(s) increments a semaphore, allowing a waiting
process to continue.
e To synchronize producer and consumer, tow semaphores are needed:
— one for leaving the consumer wait on a value produced
— and one for leaving the producer wait until the consumer is finished

with the value just produced.

e Semaphore s is created by system call screate(n) witch takes the desired
initial count as an argument, returning an integer by witch the

semaphore is known.(see ex5.c)

The consumer now prints all values 0,...,1999.

Introduction and Overview Chapter 1 26

/* ex5.c - main, prod2, cons2 */

* main -- producer and consumer processes synchrinized

* with semaphores

int prod2(), cons2();

int produced, consumed;

consumed = screate(0);

produced = screate(1);

resume (create(cons2, 200, 20, "cons", 2, consumed, produced))

resume(create(prod2, 200, 20, "prod", 2, consumed, produced))

Introduction and Overview Chapter 1 27

* prod2 -- increments n 2000 times, waiting for it
* to be consumed

prod2(consumed, produced)

{
int 1i;
for(i=1 ; i<=2000 ; i++){

wait (consumed) ;

n++;
signal (produced) ;
+
+
et e it e S e e e
* cons2 -- print n 2000 times, waiting for it to be

* produced

K e e
*/
cons2(consumed, produced)
{
int 1i;
for(i=1 ; i<=2000 ; i++){

wait (produced) ;
printf("n is \%d n", n);

Introduction and Overview

signal (consumed) ;

}

Chapter 1

28

Introduction and Overview Chapter 1 29

1.4.8 Mutual exclusion

Assume tow processes willing to print lines. Now a printer can only receive

one process at a time.

Clearly we do not want that these lines are under-leaved on the printer.
That is, we want each of these processes to have exclusive access to the

printer.

These tow processes should engage in mutual exclusion when they cooperate

so that only one of them obtains access to a resource at a given time
This can also be realized using semaphores

For example, updating a list or an array witch is shared among a number of

processes:

e allowing semultaniously access would result an undefined access of the
operation - so any process operating on that list or an array should

obtain exclusive access to it to guarantee mutual exclusion. (see ex6.c)

Introduction and Overview Chapter 1 30

/* ex6.c - additem */

int mutex; /* assume initialized with screat */
int a[100];

int n = 0;

* additem -- obtain exclusive access to

* array ’a’ and add item to it

* ___
*/
additem(item)
{
wait (mutex) ;
a[n++] = item;
signal (mutex) ;
}

The assumption here is that a process create a semaphore mutex using

screate before any process called additem.

Introduction and Overview Chapter 1 31

1.5 A layered operating system

Xinu is designed in layers

The system functions are portioned in roughly 8 components organizing

those component into a layered hierarchy (see figure 1.1).

At the system’s heart lies the scheduler and context switch:

They switch the CPU among processes ready to run.

In the next layer constitute the rest of the process manager
In the process coordination layer semaphores are implemented
Next come the procedures for the real-time clock manager

On the top of the real-time clock layer lies a layer of device manager and
device drivers, where the device-independent input and output routines

are implemented.

Above the device manager layer a layer implements machine-to-machine

communication, so called inter machine communication.
and the layer above implements the file system.

The layer for user programs lies on the top of this layered system.

See figure 1.1

Introduction and Overview Chapter 1

USER PROGRAMS
FILE SYSTEM
INTERMACHINE NETWAORK COMMUNICATION
DEVICEMANAGER AND DEVICE DRIVERS
REAL-TIME COLCK MANAGER
— INTERPROCESS COMMUNICATION
— PROCESSCOORDINATION
— PROCESS MANAGER
— MEMORY MANAGER
— HARDWARE

Figure 1.1: The layering of components in Xinu

32

