Real-Time Clock Management Chapter 10 1

10.1 Kinds of clocks assoc’d with a computer

Three kinds of clocks are assoc’d with a computer:
1. Central system clock, controlling the rate the CPU executes instructions

2. Real-time clock, pulsing regularly an integral number of times each
second, signalling the CPU each time a pulse occurs by posting an

interrupt

3. Time-of-day clock, a chronometer like a wristwatch; the CPU controls
this clock.

e Unlike the t-o-d clock, a real-time clock does not contains a counter, does

not accumulate interrupts (left to the system), and controls the CPU.

e Responsibility for counting interrupts falls upon the system:
If the CPU takes too long to service a real-time clock interrupt, or if it
operates for more than one clock cycle with interrupts disabled, it will

miss the next r-t interrupt
— Systems should service clock interrupts quickly
— Clock interrupts have highest priority

e Even so, the 11/2 processor cannot call a C-procedure on each clock

interrupt, or it would spend most of the time handling them

Real-Time Clock Management Chapter 10 2

10.2 Slowing down of the clock rate

How can the clock rate be "effective” adjusted to prevent the system

spending most of the time handling interrupts ?

e The clock interrupt (handler/dispatcher) clkint simulates a slower-rate

clock by dividing the clock rate.

e The LSI 11/2 r-t clock generates 60 pulses per second.
Clkint ”ignores” 5 clock interrupts in a row before (very quickly!) before

processing the 6-th one.

e This reduce the "effective” clock rate to 10 pulses per second, the

so-called tick rate.

Real-Time Clock Management Chapter 10 3

10.3 The use of real-time clock

e OS’s use r-t clocks to compute the time-slices allotted for the exec. of

each process, by scheduling a preemption event.

e The OS also uses the r-t clock to provide processes with timed delays:

The System maintains a list of processes, ordered by the time they
should be awakened. When the r-t clock in interrupts, it examines this

list and wakes up processes for witch the delay has expired.

e A preemption event is used to prevent to processes from running forever.

It is set in resched by :
preempt := QUANTUM

e The clock interrupt dispatcher clkint decrements preempt on each tick,

calling resched when preempt = 0.

e QUANTUM shouldn’t be too small (e.g. 2 or 3) causing too much
overhead, and not too large, slowing down the reaction time.

e In practise most processes are stopped earlier that QUANTUM ticks, by

executing wait or doing 1/0O processing.

Real-Time Clock Management Chapter 10 4

10.4 Delta List Processing

e To avoid searching through lists, delayed processes are put on delta list,

residing in the g-structure.
e Variable clockq contains g-index of its head

e At each clock tick, clkint examines the first process in clockq, and calls a
high-level interrupt routine wakeup to awake processes when their delay

has expired.

e Processes on the clockq are ordered by the time at witch they should be
awakened
— With each key telling the number of clock ticks witch the process

must delay before the preceding one on the clockq

e Procedureinsertd(pid, head, key) inserts process pid in delta-list head,
given its key key

Real-Time Clock Management Chapter 10 5

/* insertd.c - insertd */

[k
* insertd -- insert process pid in delta list "head"
K
*/
insertd(pid, head, key)
int pid;
int head;
int key;
{
int next; /* runs through */
int prev; /* follows next */

for(prev=head, next=ql[head].qgnext ;
qlnext] .qkey < key ; prev=next,next=ql[next].qgnext)
key -= qlnext].qkey;
qlpid] .gnext = next;

qlpid] .qprev = prev;
qlpid] .qgkey = key;
qlprev] .gnext = pid;
q[next] .gprev = pid;
if (next < NPROC)
q[next] .qkey -= key;
return(0K) ;

Real-Time Clock Management Chapter 10 6

10.5 Putting a process to sleep

e System call sleep(n) delay the calling (current) process for n
tenth-of-a-second, by moving the current process to the delta list clockq

e This requires introducing a new process state for that moved process:
SLEEPING- see figure 10.1

Real-Time Clock Management Chapter 10

RESCHED

RESUME SUSPEND

CREATE

Figure 7.1: The Process state transitionsfor the sleep state

Real-Time Clock Management Chapter 10

/* sleepl0O.c - sleeplO */

#include <conf.h>
#include <kernel.h>
#include <proc.h>
#include <q.h>
#include <sleep.h>

* sleepl0 -- delay the caller for a time specified
* in tenths of second

K e
*/
SYSCALL sleep10(n)
int n;
{
char ps;

if(n < 0 || clkurns==0)

return(SYSERR) ;
if (n == 0){
/* sleepl0(0) -> end time slice */
resched() ;
return(0K) ;

Real-Time Clock Management Chapter 10

disable(ps);
insertd(currpid,clockq,n) ;
slnempty = TRUE;

sltop = & qlqlclockq] .gnext].qkey;
proctab[currpid] .pstate = PRSLEEP;
resched () ;

restore(ps);

return (0K) ;

/* sleep.h */

Real-Time Clock Management

#define CVECTOR 0100

extern

extern
extern
extern

extern

extern
extern

extern

int

int
int
int

int

int
int

int

clkruns;

clockq;
count6;

*sltop;

/%

/ *
/ *
/ *
/%
/*

slnempty;/*

defclk;

Chapter 10 10

location of clock interrupt vector */

1 iff clock exists; 1 otherwise
Set at system startup.

q index of sleeping process list
used to ignore 5 of 6 interrupts
address of first key on clockq

1 iff clockq is nonempty

/*>0 iff clock interrupts are deferred*/

clkdiff; /#* number of clock ticks defrred
clkint(); /* clock interrupt handler

* /
*/

Real-Time Clock Management Chapter 10 11

/* setclkr.s - setclkr */

CVECTPC = 100 / clock interrupt vector address

CVECTPS = 102 /" " " "

DISABLE = 340 / PS that disables interrupts

ENABLE = 000 / PS taht enables interrupts

COUNT = 30000 / Times to loop (in decimal)

[k
* gsetclkr -- set clkruns to 1 iff r-t clock exists, O otherwise

Real-Time Clock Management Chapter 10 12

.globl

_setclkr:

setloop:

setint:

setdone:

mov
clr
mov

mov

mov
mov
mov
reset
mtps

dec
bpl
mtps
br

inc
add

mov
mov
mov
rts

_setclkr
rl,-(sp) / save register used
_clkruns / initialize for no clock

*$CVECTPS, - (sp)/ save clock interrupt vector
*$CVECTPC,-(sp)/ on caller’s stack

/ set up new interrup vector

$DISABLE, *$CVECTPS
$setint , *$CVECTPC
$COUNT, r1 / initialize counter for loop

/ clear other interrupts, if any
$ENABLE / allow interrupty
rl / loop COUNT times waiting for
setloop / a clock interrupt
$DISABLE / no interrupt occurred, so quit
setdone
_clkruns / clock interrupt jumps here
$4,sp / pop pc/ps pushed by interrupt

(sp)+,*$CVECTPC/ restore old interrupt vector
(sp)+,*$CVECTPS

(sp)+,rl / restore register

PC T return to caller

Real-Time Clock Management Chapter 10 13

10.6 Delays Measured in Seconds

e Size of integer n - 16 bits - limits the delay allowed by calling sleep10(n)

to 2% — 1 tenths of second = 55 min.

e System call sleep(n) measures delays in seconds and so allows delaying

up to 9 hours - see the code in sleep.con the next slide.

Real-Time Clock Management Chapter 10 14

/* sleep.c - sleep */

[k
* sleep -- delay the calling process n seconds
K
*/
SYSCALL sleep(n)
int n;
{
if (n<0 || clkruns==0)
return(SYSERR) ;
if(n === 0){
resched() ;
return(0K) ;
+
while (n >= 1000) {
sleep10(10%*n) ;
n -= 1000;
}
if (n > 0)
sleep10(10%*n);
return(0K) ;

Real-Time Clock Management Chapter 10 15

10.7 Awaking sleeping processes

e Read the code for clkint interrupt dispatcher on next slide to see:

— that clkint decrements the count of the first key on clockq at each
tick, until his equals 0

— the hight-level interrupt procedure wakeup() is called, to put process
with key = 0 on the ready list

e wakeup() assumes that interrupts have been disabled upon entry.

e read the code for wakeup() on the next slide.

Real-Time Clock Management Chapter 10 16

/* wakeup.c - wakeup */

* wakeup -- called by clock interrup dispatcher

* to awaken processes

INTPROC wakeup ()
{
while (nonempty(clockq) && firstkey(clockq) <= 0)
ready(getfirst(clockq) ,RESCHNO) ;
if (slnempty = nonempty(clock))
sltop = & qlqlclockq] .qnext] .qgkey;
resched() ;

Real-Time Clock Management

/* clkint.s - clkint */

* clkint -- real-time clock
*/

.globl _clkint

_clkint:
dec _count6
bgt clret
mov $6, _count6
tst _defclk
beq notdef
inc _clkdiff
rtt

notdef:
tst _Slnempty
beq clpreem
dec *_sltop
bgt clpreem
mov r0,-(sp)
mov ri,-(sp)
jsr pc, _wakeup
mov (sp)+,r1
mov (sp)+,x0

N N N N N N NN

N O N ON N ON N N N

Chapter 10 17

Is this the 6th interrupt ?
no => return

yes=> reset counter&continue
Are clock ticks deferred 7
no => go process this tick
yes=> count in clkdiff and

return quickly

Is sleep queue nonempty?

no => go process preemption

yes=> decrement delta key
on first process,
calling wakeup 1if
it reaches zero
(interrupt routine
saves & restore r0

and rl ; c¢ doesn’t)

Real-Time Clock Management Chapter 10 18

clpreem:

clret:

dec
bgt
mov
mov
jsr
mov

mov

rtt

_preempt / Decrement preemption counter
clret / and call reasched if it
r0,-(sp) / reaches zero

rl,-(sp) / (As before, interrupt

pc,_resched / routine must save &
(sp)+,r1l / restore rO and rli
(sp)+,x0 / because ¢ doesn’t)

/ Return from interrupt

Real-Time Clock Management Chapter 10 19

10.8 Deferred clock processing

The deferred mode allows the system to accumulate clock ticks in
variable ckldiff

A process can place the clock in deferred mode by calling stopclk, and

return clock to real time mode by calling strtclk
Stopclk counts deferral requests by incrementing defclk
strtclk counts "restarts” requests by decrementing defclk

As long as defvlk remains positive the interrupt handler counts clock
times in clkdiff without processing them

strclk "makes” up for last time when defclk = 0, by catching up on all
events that should have occurred while the clock remained deferred:
— srtclk updates the preemption counter and

— abstracts the accumulated ticks from the delay of sleeping process

Real-Time Clock Management Chapter 10 20

/* ssclock.c - stopclk, strtclk */

#include <conf.h>
#include <kernel.h>
#include <proc.h>
#include <q.h>
#include <sleep.h>

stopclk()

{
defclk++;

Real-Time Clock Management Chapter 10 21

srtclk()
{
char ps;

int makeup;

disable(ps);
if (defclk<=0 || --defclk>0){
restore(ps);
return,;
+
makeup = clkdiff;
preempt -= makeup;
clkdiff = O;
if (slnempty){
for(next=firstid(clockq) ;
next < NPROC && qlnext].qkey < makeup ;
next=q[next] .qgnext){
makeup -=q[next] .qgkey;
q[next] .qkey = 0;

Real-Time Clock Management Chapter 10

if (next < NPROC)
q[next] .qgkey -= makeup;

wakeup () ;
}
if (preempt <= 0)
resched() ;

restore (ps) ;

22

Real-Time Clock Management Chapter 10 23

10.9 Clock intialization

e The clock interrupt vector should be initialized at system start-up,
before clock interrupts occur.
Done by calling clkinit()

e CVECTOR (= 0100) : defined in sleep.h on earlier slide
e Recall setclkr() initializes clkruns

e Read setclkr()

— Observe in setup: hardware clock rl decreased at tact of hardware

clock

— If after 30.000 ticks of the hardware clock no r-t interrupt occurred,

clkruns remains zero
— If clock interrupt occurs, setclkr’s control jumps to setint: clkruns j 0

— setclkr returns, after restoring the original r-t clock vector, to the

next instruction pointed at by PC.

Real-Time Clock Management Chapter 10 24

/* clkinit.c - cklinit */

* clkinit - initialize the clock and sleep queue
* (called at startup)

clkinit ()
{
int *vector;
vector = (int *) VECTOR /* set up interrupt vector */

*vector++ = clkint;

setclkr();
preempt = QUANTUM; /* initial time quantum */
count6 = 6; /* 60ths of a sec. counter */

slnempty = FALSE; /* initially, no process asleep */
clkdiff = 0; /* zero deferred ticks * /
defclk = 0; /* clock is not deferred x/

clockq = newqueue(); /* allocate clock queue in q */

