Device Independent Input and Output Chapter 11 1

Introduction (1)

Operating system control I/O devices for three reasons:

e The hardware interface to such devices is crude, requiring complex

software packets for their control called device drivers

e device drivers are shared resources, witch need to be protected and

allocated in a fair and safe way

e A uniform, flexible interface should be provided, - A high-level interface -
allowing users to write programs without knowing the machine

configuration.

Device Independent Input and Output Chapter 11 2

Introduction (2)

Discussed in this chapter is: the selection of a set of machine-independent
high-level 1/O primitives and data structures required to relate these

primitives to specific devices

How are these primitives selected 7
e By generating a list of desirable properties

e Delivering a set of high-level primitives, and give their meaning w.r.t.

certain abstract (classes of) devices, terminal, disks, etc.

e Build software mapping the abstract devices to particular instances of
that device.

Device Independent Input and Output Chapter 11 3

11.1 Properties of the I/0O interface

e Should processes block while performing I/O operations ?
or should they continue executing and be notified when the operation

completes ?

Asynchronous ops: useful for controlling overlap - i.e., more
parallelism - of computation and 1/O ops

Synchronous ops:

— delay input ops until data arrives and output ops until data has been

consumed
— their advantage is that users can depend on data immediately ofter
an input op., and change data immediately after an output op.
e Which format have data, and what is the size of transfer ?
— Single-byte transfer (teletype terminals, e.g. the console)

— block transfer (a block of many bytes)

Device Independent Input and Output Chapter 11 4

11.2 Abstract operations

e getc(), putc(,ch): deal with single-character transfer
— getc() reads next character from keyboard

— putce(,ch) display one character on terminal

e read, wrtie: deal with transfer to/from contiguous blocks of memory
— read read a specialised number of characters

— write displays several characters within one call

e control allows control of the device (driver): e.q., whether the system

echoes each character as it is typed in the keyboard

e scek applies only to randomly accessible memory and the searches for a

particular position

e open, close inform device (drivers) that data transfer will begin or has

ended (applies to disk and file access)

e ¢nit initialize the device and device driver at system start up

Device Independent Input and Output Chapter 11 5

11.3 Binding abstract operations to real devices

The system maps these high-level 1/O operations to specific device drivers

it hides the details of the hardware and the device drivers.
E.g., that keyboard and display are independent
it makes programs independent of the particular hardware configuration

The high-level calls of these operations constitute the environment which
the system presents to running programs - i.e.
the programs only perceive the peripheral devices through these abstract

calls
The system also maps abstract names s.a. console to real devices

Coded into the system is a description of each abstract devices:

— e.g., the device driver routines which it uses, the address of the real

device to which it corresponds

When a new device is added to the system, or, e.g., the device addresses

are modified, the system must be altered and recompiled

However, since programs do not contain direct calls to these devices and
their drivers, and no device addresses, programs don’t need to be

recompiled, as long as the abstract device descriptors do not change

Device Independent Input and Output Chapter 11 6

11.4 Binding I/O calls to device drivers at run-time

e Routines like read in the compiled code should map abstract device
descriptors, s.s., console, to device driver routines and real device

addresses

e In Xinu, each abstract device is assigned an integer device descriptor,
0,... 8 at system configuration.

E.g., console has the same device descriptor in all Xinu systems.

e After system configuration, device descriptors are bound into the system
when it is compiled, and these are placed in a library.

No recompilation needed unless the system changes (e.g, a new device is
added)

e At run-time (after compilation) the program calls high-level routines s.a.
read(descriptor,,), and putc(descriptor,ch) having the device descriptor

as argument.

e Device descriptor: an index into the device switch table which contains

an entry for each value of the device descriptor

e Device switch table: devtab/0...8] maps 0...8 to a structure of devsw
containing the device drivers for that abstract device, and device

addresses.

Device Independent Input and Output Chapter 11

11.4.1 device switch table

/* conf.h (GENERATED FILE; DO NOT EDIT) */

#define NULLPTR (char *)O
/* device table declarations */

struct

devsw { /* deive table entry */
int dvnum;

int (*dvinit) ();
int (xdvopen) () ;
int (*dvclose) () ;
int (xdvread) () ;
int (kdvwrite) () ;
int (xdvseek) () ;
int (*dvgetc) () ;
int (kdvputc) () ;
int (*dventl) () ;
int dvsr;

int dvivec;

int dvovec;

int (*dviint) () ;
int (*dvoint) ();
int (*dvioblk) () ;
char *dvioblk;

int dvminor;

};

7

Device Independent Input and Output Chapter 11 8

extern struct devsw devtab[]; /* One entry per device */

/* Device name definitions */

#define CONSOLE O /* type tty */
#define OTHER 1 /* type tty */
#define RINGOIN 2 /* type dlc %/
#define RINGOOUT 3 /* type dlc */
#define DISKO 4 /* type dsk */
#define FILE1 5 /* type df */
#define FILE2 6 /* type df */
#define FILE3 7 /* type df */
#define FILE4 8 /* type df */

/* Control block sizes */

#define Ntty 2
#define Ndlc 2
#define Ndsk 1
#define Ndf 4

##tdefine NDEVS 9

Device Independent Input and Output Chapter 11

/* Declarations of I/0 routines referenced */

extern int ttyinit) ;
extern int ionull();
extern int ttyread() ;
extern int ttywrite();
extern int iocerr();
extern int ttyctl();
extern int ttygetcQ;
extern int ttyputc();

extern int ttyiin();
extern int ttyoin();
extern int dlcinit();
extern int dlcread();
extern int dlcwrite();
extern int dlccntl();

extern int dlcputc();

extern int dlciin();
extern int dlcoin();
extern int dsinit();
extern int dsopen() ;
extern int dsread();
extern int dswrite();

extern int dsseek();

Device Independent Input and Output Chapter 11 10

extern int dscntl();
extern int dsinter();
extern int 1finit () ;
extern int 1fclose();
extern int 1fread();
extern int 1fwrite();
extern int 1fseek () ;

extern int 1fgetc();
extern int 1fputc();

/* Configuration and Size Cnstants */

#define MEMMARK /* define if memory marking used */
#define NNETS 1 /* number of Xinu ring networks */

#define NPPROC 10 /* (remove if there are zero) */

#define NSEM 50 /* total number of semaphores */
#define RTCLOCK /* system has a real-time clock */
/* label printed at startup */

#define VERSION "6.1b (05/22/84)"

Device Independent Input and Output Chapter 11 11

Each entry corresponds to a single device, containing:

dvnem the corresponding entry into the interrupt dispatch table intmap

addresses of the device driver routines for that device: dvgetc, devputc,
dvread, dvwrite, dvcontrl, dvseek, dvinit
These routines hold addresses of driver routines corresponding to

high-level operations.

device address and other informations, since more than one device can
use the same device driver.

device switch table also contains:

— hardware device addresses dvcsr

— interrupt vector addresses duvivec, dvovec

— the interrupt routines for :
input dviint
output dvoint

— buffer pointer dvioblk

— an integer dvminor distinguishes among multiple copies of a device

Device Independent Input and Output Chapter 11 12

11.5 Implementation of high-level I/O operations

There is a procedure call in the object code of a program for each of the

abstract operations getc, put, read etc. - e.g.
read(descrp, buff, count)

descrp is the device descriptor: index into device switch table devtab
buff is the address of buffer into which the data read should be written

count is the number of charters to read

Device Independent Input and Output Chapter 11

/* read.c - read */

#include <conf.h>
#include <kernel.h>
#include <io.h>

read(descrp, buff, count)
int descrp, count;

char *buff;

{

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];

return((xdevptr->dvread) (devptr,buff,count));

13

Device Independent Input and Output Chapter 11 14

/* control.c - control */

#include <conf.h>
#include <kernel.h>
#include <io.h>

control(descrp, func, addr, addr2)
int descrp, func;
char *addr,*addr?2;

{

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];
return((xdevptr->dvcntl) (devptr, func, addr, addr2));

Device Independent Input and Output Chapter 11 15

/* getc.c - getc */

#include <conf.h>
#include <kernel.h>
#include <io.h>

[k -
* getc - get one character from a device
K
*/

getc(descrp)

int descrp;

{

struct devsw *devptr;

if (isbaddev(descrp))
reurn (SYSERR) ;
devptr = &devtabl[descrpl];
return((*devptr->dvgetc) (devptr));

Device Independent Input and Output Chapter 11 16

/* init.c - init */

#include <conf.h>
#include <kernel.h>
#include <io.h>

init (descrp)
int descrp;

{

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];
return((*devptr->dvinit) (devptr));

Device Independent Input and Output Chapter 11

/* putc.c - putc */

#include <conf.h>
#include <kernel.h>
#include <io.h>

putc(descrp, ch)
int descrp;
char ch;

{

struct devsw *devptr;

if (isbaddev (descrp))
return (SYSERR) ;
devptr = &devtab[descrp];
return((*xdevptr->dvputc) (devptr,ch));

Device Independent Input and Output Chapter 11 18

/* seek.c seek x/

#include <conf.h>
#include <kernel.h>
#include <io.h>

seek(descrp, pos)
int descrp;

long pos;

{

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];
return((*devptr->dvseek) (devptr,pos));

Device Independent Input and Output Chapter 11 19

/* write.c - write */

#include <conf.h>
#include <kernel.h>
#include <io.h>

write(descrp, buff, count)
int descrp, count;
char *buff;

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];
return((xdevptr->dvwrite) (devptr,buff,count));

Device Independent Input and Output Chapter 11 20

11.6 Opening and closing devices

Disk devices require programs to start them up before a transfer operation,

and to stop them before after the transfer completed.

- open

- close

Device Independent Input and Output Chapter 11 21

/* colse.c - close *x/

#include <conf.h>
#include <kernel.h>
#include <io.h>

[k -
* close - close a device

K
*/

close(descrp)

int descrp;

{

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];
return((*devptr->dvclose) (devptr));

Device Independent Input and Output Chapter 11 22

/* open.c - open */

#include <conf.h>
#include <kernel.h>
#include <io.h>

* open - open a connection to a device/file
* (parms 2 & 3 are optinal)

K
*/

open(descrp, nam, mode)

int decrp;

char *nam;

char *mode ;

{

struct devsw *devptr;

if (isbaddev(descrp))
return (SYSERR) ;
devptr = &devtab[descrp];

return((*devptr->dvopen) (devptr, nam, mode));

Device Independent Input and Output Chapter 11 23

11.7 Null and error entires in devtab

Some entries in the device table are not meaningful for a particular device.
E.g., open and close do not apply to consoles. Calling there operations would

result in a n error for console

How should these entries be filled in ?

By using:
e soerr - returns SYSERR when called - This signifies an illegal operation

e sonull - returns OK - Signifies an unnecessary but, otherwise, innocuous

operations.

Device Independent Input and Output Chapter 11 24

/* ioerr.c - ioerr x/

#include <conf.h>
#include <kernel.h>

ioerr()

{
return(SYSERR) ;

/* ionull.c - ionull */

ionull()

{
return(0K) ;

Device Independent Input and Output Chapter 11 25

11.8 Initialization of the I/0O system

Devtab is initialized at system configuration time, so it is completely filled in

by the time the system is complied - See Comer pg. 154,155.

Device Independent Input and Output Chapter 11 26

11.9 Interrupt vector intialization

Interrupt vector and the interrupt dispatch table intmap are initialied at
run-time, using the information in devtab, by calling init(0), ...init(8) - See

chapter 13.

