An Example Device Driver Chapter 12 1

13 Overview

e Device driver: a set of procedures controlling a peripheral hardware
device

e Device driver routines partitioned into:
— Upper-half device drivers: called from user programs
— Lower-half device drivers: handling device interrupts

e These tow halves communicate via a shared data structure, the device
control block

e In this chapter discussed: device driver for tty, managing:
— output to display screen
— input from keyboard

using a SLU, an asynchronous serial line interface

An Example Device Driver Chapter 12 2

e Upper-half tty device routines implement the read, write, getc, putc,
control device-independent 1/O procedures
e Lower-half tty device routines:

— Qutput procedure ttoin: called when transmitter interrupts, sending a

char from out-buffer- i.e. from the queue of chars waiting to be sent.
— Input procedure ttyiin: called whenever an input char arrives, puts it i

queue (in-buffer) of incoming chars to be retrieved by upper-half routi

e Initialiization procedure ttyinit: fills in device control block and interrupt

vectors when system starts.
A device driver for the CONSOLE tty introduces:

e The device switch table devtab forms the framework linking interrupts,

devices and device driver routines

e The device driver routines for a standard computer terminal with a

keyboard, called teletype - tty

e From the computer’s viewpoint, this device consists of an serial

asynchronous line unit ,SLU, between the keyboard and the system bus

An Example Device Driver Chapter 12 3

13.1 The Device Type TTY

(1)
e Each tty has as input device a keyboard transmitting characters (witch

are type) to the computer, and an output device for displaying

characters received from the computer on its screen.

e The tty device driver consists of routines witch map operating system
routines for reading/writing characters to display and receiving chars
from keyboard.

e In practice, these driver routines communicate with the SLU - controller,

requesting it to send characters or to receive chars.

e The controller’s hardware transforms characters to and from electrical

impulses on lines connecting the SLU to the terminal.

An Example Device Driver Chapter 12 4

(2)
To minimize the interference between I/0O devices and running processes, the

driver uses interrupt- driven processing, to :
1. Transmit characters when SLU is idle,
2. read characters when these are received by the SLU,
3. handle errors in the receiving process (receiver),

4. coordinate requesters for I/O with the speed of the device

The latter is important because character transmission times are many

orders of magnitude slower than processing speed

An Example Device Driver Chapter 12 5

(3)
The tty driver operates using parameters, so it can be used for a variety of

terminals in a variety of system configurations
e Severals parameters control the échoof characters typed in the keyboard
onto the screen.

— terminals operating in full-duplex mode do not display characters
typed by the user - such terminals need the system to echo these

characters
— terminals operating in half-duplex mode display keystrokes

automatically, and don’t need the system to echo them

e Parameters concerning whether to echo unprintable control chars as

printable combinations

e parameters dealing with moving to a new line:

There are tow unprintable characters controlling movement of the cursor

— Return (also called ”carriage return”): moving the cursor to the

beginning of the current line

— Newline : moving cursor vertically down by one line

An Example Device Driver Chapter 12 6

(4)
However, programs like to deal with a single end-of-line character to move to

a new line

In practice, terminal must receive both newline and return chars to move to

the start of a new line

Now, to simplify programming, the tty driver can interpret both newline and
return as the mowve-to-the-start-of-a-new-line character, depending on the

value of several parameters:
e icrlf : controls mapping of return to mowve-to-the-start-of-a-new-line

e ocrlf : controls mapping of newline to move-to-the-start-of-a-new-line.

An Example Device Driver Chapter 12 7

13.2 Upper And Lower Halves of The Device Driver

(1)
The tty device drivers are partitioned in tow sets:

e Upper half device drivers: These are called by user processes through

devtab in order to read/write characters

e Lower half device drivers: These are called from the interrupt dispatcher
through the intmap interrupt dispatch table during interrupts, in order

to transfer characters - these do the real work

This partition decouples normal processing from hardware interrupts

An Example Device Driver Chapter 12 8

(2)
Every device has its own circular buffers:

e One for transferring input requests, connecting high-level calls for

actions for input along the SLU, and

e one for transferring high-level output requests to action for output along
the SLU.

I.e., there buffers record outgoing data from the time the user requests them

to be sent until the time the device (SLU) receive them.

And record incoming data from the time the SLU deposits them until the

user program requests them

An Example Device Driver Chapter 12 9

(3)
These buffers are important for three reasons:

1. The driver can accept incoming characters before the user process reads

them (since terminals user can start typing at any time)
2. Device s.a. disks transfer data in large blocks

3. These buffers permit the drivers to perform I/O concurrently with user

processes
So the tty driver uses tow circular buffer per terminal - One for input

- One for output

An Example Device Driver Chapter 12 10

Output:

e output operations issued by the calling user program are deposited as to

be written in the output buffer, and return to the caller

e Also, these operations are accompanied by setting the
interrupt-enable-bit of the SLU to 1 for the output line

e As a result, the SLU transmitter interrupts whenever it is idle, calling

interrupt processing routines in the lower half of the tty device driver

e To pick up characters from the output buffer and places them into the

output control area, thereby starting their transmission.
Input:

e Whenever the SLU receiver interrupts after/when it has received a
characters, the interrupt dispatcher calls the lower-half input interrupt

routine.

e The lower-half interrupt input handler reads the waiting character and

deposits it in the circular buffer

e A process waiting for input from the (empty) circular buffer is started as

soon as the next character arrives

An Example Device Driver Chapter 12 11

13.2.1 Communication between the tow halves of the device

driver
Ideally, the tow halves of the device driver communicate through the shared
buffer

e Upper-half routines enqueue requests for data transfer or device control;

they do not interact with devices directly.

e Lower-half routines transfer data from buffer or control devices; they do

not interact with user program directly
In practice, the tow halves do more than manipulate shared data:

e An output routine starts up the lower-half routine when it deposits

output in its buffer.

e In case the available buffer space is full when a process tries to write, the
upper and lower halves must coordinate, stopping that process until

space becomes available.

e They start a process waiting for output from an empty buffer, as soon as

the next character arrives.

An Example Device Driver Chapter 12 12

13.3 Synchronization Of The Upper And Lower Halves

e The synchronization of the upper and lower halves via circular buffers
seems at first glance to be a simple instance of producer-consumer

synchronization, implemented using semaphores.

e For upper-half output routines produce characters consumed by the
lower-half output routines.
And lower-half input routines produce characters consumed by

upper-half input routines.

e But, there is a problem:

— Input poses no problem because user processes calling upper-half
routines can wait for lower half input routines to produce a character.

The latter is signalled by a signal operation, in interrupt mode.

— However, the following violates the rule that processes in interrupt
mode should always be current or ready, and never by an any other
list that the ready list:

Output poses s problem, if output offered by a user process is
translated in a signal operation in the upper-half routines, since this
implies that the lower-half routines should wait by a wait

operation.until that a character becomes available.

An Example Device Driver Chapter 12 13

13.4 A Problem And Its Solution

Problem :
during an interrupt, the process carrying out that interrupt, should always
be running (CURRENT) or on the ready queue (READY), but never be

waiting on another queue, i.e. be in another process state.

But that is implied by the above producer/consumer sinchronization for

output op.
For the null process is only allowed to be in the READY or CURRENT

state, since, otherwise, there might be no process ready to run when calling

resched

An Example Device Driver Chapter 12 14

Solution: For the output:

e instead of synchronization upper and lower halves by the availability of
output characters, occupying free buffer space, synchronize them by the
size of the complement:

The number of free buffer slots

e Now the output op. in the upper-halve device driver has to wait for free
space to become available, whenever the output op. in the lower-half
signals that free space has become available, after an output op. in the
SLU has interrupted, i.e. ended.

e In this way, the lower-half ” Produce” free space, which upper-half

7 consumes”’

An Example Device Driver Chapter 12 15

13.5 Control Block and Buffer Declarations

(1)
e Each SLU used as tty has its own part of input and output buffer, and

accompanying input and output semaphores

isem(counting# of chars)

osem(counting# of free buffer slots)

This, and other info. is kept in the control block structure
e There is a control block structure for each tty device

e Control blocks also contains the control parameters
v crlf
o crlf

An Example Device Driver

/* tty.h */

#define

#tdefine

#tdefine

/* size

#ifndef
#define
#endif
#ifndef
#define
#endif
#ifndef
#define
#endif

/* mode

#tdefine

#define
#define

I0CHERR

OBMINSP

EBUFLEN

constants */

Ntty
Ntty

IBUFLEN
IBUFLEN

OBUFLEN
OBUFLEN

constants */

IMRAW

IMCOOKED
IMCBREAK

0200

20

20

128

64

)R)

)CJ
JKJ

Chapter 12 16

bit set in when an error

occurred reading the char
min space in buffer before
processes awakend to write

size of echo queue

number of serial tty lines

num. chars in input queue

num. chars in output queue

raw mode => nothing done

cooked mode => line editing

honor echo,

*/
*/

etc, no line editx*x/

#tdefine OMRAW

struct

An Example Device Driver

tty
int
int
char
int
int
int
char
int
int
int
int
char
char
Bool
Bool
Bool
Bool
Bool
Bool
char
Bool

char

{
ihead;

itail;

)R; /*

/ *
/*
/*

Chapter 12 17

raw mode => normal processingx/

tty line control block
head of input queue

tail of input queue

ibuff [IBUFLEN] ; /* input buffer for this line

isem;
ohead;
otail;

/ *
/ *
/ *

input semaphore
head of output queue

tail of output queue

obuff [OBUFLEN] ; /* output buffer for this linex*/

osem;
odsend;
ehead;

etail;

/*
/ *
/*
/*

output semaphore
sends delayed for space
head of echo queue

tail of echo queue

ebuff [EBUFLEN]; /* echo queue

imode;
iecho;
ieback;
evis;
ecrlf;
icrlf;
lerase;
lerasec;
ikill;
ikillc;

/ *
/ *
/* do

IMRAW, IMCBREAK, IMCOOKED
is input echoed?

eraising backspace on echo?
echo control chars as "X 7
echo CR-LF for newline?

map ’\r’ to ‘\n’ on inpute?
honor erase character?
erase character (backspace)
honor line kill character?

line kill character

};

extern

#define
#define
#define
#define
#define
#define
#define
#define
#define

An Example Device Driver Chapter 12 18

int icursor; /* current cursor position */
Bool oflow; /* honor ostop/ostart? */
Bool oheld; /* output currently being hedl?x/
char ostop; /* character that stops output */
char ostart; /* character that starts output*/
Bool ocrlf; /* echo CR/LF for LF ? */
char ifullc; /* char to send when input fullx/

struct csr *ioaddr;/* device address of this unit */

struct tty ttyl];

BACKSP ’\b’

BELL ’\07°

ATSING ’@°

BLANK ??

NEWLINE ’\n’

RETURN ’\r’

STOPCH ’\023’ /* control-S stops output */
STRTCH ’\021’ /* control-Q restarts ouput */
UPARROW ’ 77

/* ttycontrol function codes */

#define
#tdefine

TCSETBARK 1 /* turn on BRAEK in transmitter */
TCRSTBARK 2 /* turn off BREAK " " */

#define
#define
#define
#define
#define
#define
#define
#define

An Example Device Driver

TCNEXTC
TCMODER
TCMODEC
TCMODEK

TCICHARS

TCECHO

TCNOECHO

TFULLC

© 00 O O b W

10
BELL

Chapter 12 19

look ahead 1 character */
set input mode to raw */
set input mode to cooked */
set input mode to cbreak */
return number of input chars */

turn on echo */
turn off echo */
char to echo when buffer fullx/

An Example Device Driver Chapter 12 20

(2)
Key components:

input buffer ibuff + input semaphore isem
output buffer o buff + output semaphore osem

counting the number of free buffer slots- See the figure below :

Head pointer: points to the next loc. in the array
initially: head/tail pointer ——>0 to fill; This is where chracters are inserted

1sem =0

full: head = tail pointer
1sem = 127
osem =0

63 /127 /
i

obuf ibuf

Tail pointer: points to next loc. in the array

to empty; This is where characters are deleted

An Example Device Driver Chapter 12 21

(3)

There is one control block structure per device in array tty, indexed by

the minor device number.

Ntty: number of tty device : the system config. program assign a

number dev. nr. from 0 ... Ntt-1 to each device.

Also: system config. program places the device number dev. nr. in the
dev. witch table devtab

Both the interrupt device routines in lower half and driver routines in

upper half use minor dev. numbers as index into array tty

Control block contains the info. needed for synchronizing upper and

lower half routines

An Example Device Driver Chapter 12 22

13.6 Upper-half tty Input Routines

Routines :

ttygetc
ttyputc
ttyread
ttywrite

from basis of upper-half tty driver routines, corresponding to :

getc
putc
read
write

witch are high-level 1/O ops. from chapter 11

An Example Device Driver Chapter 12 23

Simplest is ttygetc:

e ltygetc returns the minor dev. nr. from dev. sw. table and uses it as

index into array tty to locate correct corresponding control block

e then it executes wait(isem) until lower-half input routine deposits a

character in ibuf

e when wait returns, ttygetc extracts next char. from ibuf and updates tail

pointer using modulo (128) arithmetic and returns.

#include
#include
#include
#include

#include

ttygetc(
struct

{

An Example Device Driver Chapter 12 24

<conf.h>
<kernel.h>
<tty.h>
<io.h>
<slu.h>

devptr)
devsw *devptr;

char ps;
char ch;
struct tty *iptr;

disable(ps);
iptr = &ttyl[devptr->dvminor];
wait(iptr->isem); /* wait from a character in buff */
ch = iptr->ibuff [iptr->itail++];
if (iptr->itail == IBUFLEN)
iptr->itail = 9;
restore (ps) ;
return(ch) ;

An Example Device Driver

Chapter 12

25

An Example Device Driver Chapter 12 26

ttyread:

e It has three parameters:
1. device switch table entry to identify min. dev. nr.
2. buffer to which read input data should be output

3. number of character to read nread
e reading all chars. in ibuf encoded by number of characters to read = 0

e tow cases treated :
1. bread < number of chars. in ibuf

2. nread ; number of chars. in ibuf

An Example Device Driver Chapter 12 27

/* ttyread.c - ttyread */

#include <conf.h>
#include <kernel.h>
#include <tty.h>
#include <io.h>
#include <slu.h>

ttyread(devptr, buff, count)

struct devsw *devptr;

int count;
char *buff;
{
char ps;

register struct tty *ptr;

int avail, nread;

if (count < 0)
return(SYSERR) ;
disable(ps);

An Example Device Driver Chapter 12 28

avail = scount((iptr= &ttyldevptr->dvminor])->isem);
if ((count = (count==0 ? avail : count)) =) {
restore(ps;)
return(0) ;
}
nread = count;
if (count <= avail)
readcopy (buff, iptr, count);
else {
if (avail > 0) {
readcopy(buff, iptr, avail);
buff += avail;
count -= avail;
}
for(; count > 0; count—-)
*buff++ = ttygetc(devptr);
}
restore(ps);

return(nread) ;

An Example Device Driver Chapter 12 29

13.7 Upper-Half tty Output Routines

number of char. in obuf = 6
===> osem = 64-5

OBuflLen = 64

63 —= ‘
0/ =/

Y otail

e ityputc: note iptr —;ocrlf flag indicates whenever after ch ==
NEWLINE the return -char. should be inserted by ttyputc(devptr,

return,)

e Just before ttyputc returns, ttyputc enables output - transmitter
interrupts in the SLU, to guarantee that lower-half will transfer chars.

inserted into obuf

e ctstat: identifies transmitter control and states field XCSR of the

SLU-register.
And bit T of XCSR set to 1 enables it interrupt when transmitter

becomes idle.

An Example Device Driver Chapter 12 30

Structure csr defines the layout of the SLU device regs in the address

space.

To move data into SLU device reg., ttyputc needs to know the address

assigned to SLU upon hardware installation.

During device initialization this is copied into the ¢ty control block field
ioaddr, by calling ttyinit via calling init(o)
ttyinit declared on later slide

Using the device reg. address ioaddr as pointer, ttyputc writes into the

ctstat field of the structure it points to.

Since this address is ”beyond real memory”, it is computed by the

hardware and dev. output output interrupt enable bit is assigned to 1 by
assigning SLUENABLE = 0100

This is the only way upper-half routines to awaken low-half routines to

initiate character transfer.

An Example Device Driver Chapter 12 31

/* ttyputc.c - ttyputc */

#include
#include
#include
#include
#include

<conf.h>
<kernel.h>
<tty.h>
<io.h>
<slu.h>

ttyputc(devptr, ch)

struct devsw *devptr;

char ch;
{
struct tty *iptr;
char ps;
iptr = &tty[devptr->dvminor];

if (ch==NEWLINE && iptr->ocrlf)

ttyputc(devptr,RETURN) ;

wait (iptr->osem) ; /* wait for space in queue */

disable(ps);
iptr->obuff [iptr->ohead++] = ch;
if (iptr->ohead >= OBUFLEN)

An Example Device Driver

iptr->ohead = 0;
(iptr->iohead)->ctstat

restore(ps);
return(0K) ;

Chapter 12

SLUENABLE;

32

An Example Device Driver Chapter 12 33

/* slu.h */

/* standard serial line unit device constants */

#define
#define
#define
#define

#define
#define

SLUENABLE
SLUREADY
SLUDISABLE
SLUTBREAK

SLUERMASK
SLUCHMASK

0100 /* device interrupt enable bit */

0200 /* device ready bit */

0000 /* device interrupt disable maskx*/

0001 /* transmitter break-mode bit */
/* mask for error flages on inputx*/

0170000

0377 /* mask for input character */

/* SLU device register layout and

* correspondence to vendor’s names */

struct

csr {

int crstat;
int crbuf;
int ctstat;
int ctbuf;

/* receiver control and status (RCSR) */

/* receiver data buffer (RBUF) x/
/* transmitter control & status(XCSR) */
/* transmitter data buffer (XBUF) x/

An Example Device Driver

SLUENABLE 0100 (octal)
SLUREADY 0200 (octal)
SLUERMASK 0170000 (octal)
SLUCHMASK 0377 (octal)

Chapter 12

34

An Example Device Driver Chapter 12 35

/* ttywrite.c - ttywrite, writecopy */

#include <conf.h>
#include <kernel.h>
#include <tty.h>
#include <io.h>
#include <slu.h>

ttywrite(devptr, buff, count)
struct devsw *devptr;

char *buff;

int count;

{
register struct tty *ttyp;
int avail;
char ps;

if (count < 0)

return(SYSERR) ;
disable(ps);
ttyp = &ttyl[devptr->dvminor];

An Example Device Driver Chapter 12 36

if ((avail=count(tty->osem)) >= count) {
writecopy(buff, ttyp, count);
(ttyp->ioaddr)->ctstat = SLUENABLE;

} else {
if (avail > 0) {
writcopy(buff, ttyp, avail);
buff += avail;
count -= avail;
}
for(; count>0 ; count--)
ttyputc(devptr, *buff++);
}
restore(ps);
return(0K) ;

An Example Device Driver Chapter 12 37

13.8 Lower-half tty driver routines

There are tow of them :
e lower-half input-interrupt routine ttyiin
e lower-half output-interrupt routine ttyoin

ttyoin: Code on later slide. Recall interrupt dispatcher calls ttyoin with

interrupts disabled, wherever output device driver is idle

ttyoin(iptr) address of tty-control block for the interrupting device.

An Example Device Driver Chapter 12 38

A ttyoin(iptr)-call considers 3 cases:
e a char. from echo buffer ebuf must be transmitted

e the driver should do something because output is currently interrupted
until lines is full

e a character from the output buffer is transmitted.

Tow ways to do this:
— There is more than OBMINSP(=20) free space in obuf. Character is

put in device reg. and signal(osem) called, to free on buffer slot

— There is less than OBMINSP free space in obuf. Chars still
transmitted. But signal(osem) deleted to halt ttyputc

#include
#include
#include
#include

#include

* ttyoil

* inter

INTPROC

An Example Device Driver Chapter 12 39

<conf.h>
<kernel.h>
<tty.h>
<i0.h>
<slu.h>

n -- lower-half tty device driver for output
rupts

ttyoin(iptr)

register struct tty *iptr;

register struct csr *cptr;

int ct;

cptr = iptr->ioaddr;
if (iptr->ehead != iptr->etail) {
cptr->ctbuf = iptr->ebuff[iptr->etail++];
if (iptr->etail >= EBUFLEN)
iptr->etail = O;

return;

if (iptr->oheld) {

An Example Device Driver Chapter 12 40

cptr->ctstat = SLUISABLE;

return;
+
if ((ct=scount(iptr->osem)) < OBUFLEN) {
cptr->ctbuf = iptr.>obuff [iptr->otaill;
if (iptr->otail >= OBUFLEN)
iptr->otail = O;
if (ct > OBMINSP)
signal (iptr->osem);
else if (++(iptr->odsend) == OBMINSP) A
iptr->odsend = 0;
signaln(iptr->osem, OBMINSP);

} else
cptr->ctstat = SLUDISABLE;

An Example Device Driver Chapter 12 41

13.9 Lower-Half Input Processing

Input interrupt processing moves complex because it caters for :
e character echo
e line editing
e processing of input errors
e buffer overflow

It operates in one of three modes, spec’d by ¢mode field in tty control block :
e row : accumulates chars in ibuff without further processing

e cooked : dose character echo; honors suspend or restart output;
accumulates full lines before passing them on to upper-half routines;

honors input editing by erasing previous chars or killing entire lines

e cbreak : honors control chars but does no lines editing

An Example Device Driver Chapter 12 42

In raw mode :
e tiywin takes input char. from SLU-receiver unit
e deposits it in ibuf,
e signals isem

e if no space remains, ttyiin throws char. away errors reported by setting
8th-char. bit to 1

In cbreak mode, ttyiin takes input char. from SLU-receiver unit maps

return to newline,

An Example Device Driver Chapter 12 43

handles output flow control :

field oflow determinate whether driver honours flow control

if it does, driver suspends output by setting oheld when receiving ostop

character,
starting output when receiving ostart character

ostart and ostop control chars, not placed in ibuf for processing by

upper-half input routine ttygetc

reports ibuffer overflow by sending ifullc character in echo buffer,

ringing a bell-does character echo

An Example Device Driver Chapter 12 44

In cooked mode, also performed : line editing,

accumulating lines in ibuf using var icursor for counting chars on

current line
erasing chars when ierasec arrives (decrementing icursor by 1)

when receiving line-kill char ikille, ttyiin backs over all chars on current

line by icursor := 0,
calling erasel procedure to obliterate chars from display

upon receiving NEWLINE or RETURN char, signalling isem, icursor

times

An Example Device Driver Chapter 12 45

#include <conf.h>

INTPROC ttyiin(iptr)

register struct tty *iptr; /* pointer to tty block */

register struct csr *cptr;
register int ch;
Bool cerr;

int ct;

cptr = iptr->ioaddr;
if (iptr->imode == IMRAW){
if (scount (iptr->isem) >= IBUFLEN) {
ch = cptr->crbuf;

return,;

/* character error */
if ((ch=cptr->crbuf)&SLUERMASK)
iptr->ibuff [iptr->ihead++] =
(ch&SLUCHMASK) | IOCHERR;

An Example Device Driver Chapter 12 46

else /* normal read complete */
iptr->ibuff [iptr->ihead++] = ch & SLUCHMASK;
/* wrap buffer pointer */
if (iptr->ihead >= IBUFLEN)
iptr->ihead = O;
signal (iptr->isem);
} else {
cerr=((ch=cptr->crbuf)&SLUERMASK) ? IOCHERR : O;
ch &= SLUCHMASK;
if (ch == RETURN && iptr->icrlf)
ch = NEWLINE;
if (iptr->oflow) {
if (ch == iptr->ostart) {
iptr->oheld = FLASE;
cptr->ctstat = SLUENABLE;

return;

if (ch == iptr->ostop) {
iptr->oheld = TRUE;

return;

+
iptr->oheld = FALSE;
if (iptr->imode == IMCBREAK) { /* cbreak mode */
if (scount (iptr->isem) >= IBUFLEN) {

An Example Device Driver Chapter 12 47

eputc(iptr->ifullc,iptr,cptr);

return;
}
iptr->ibuff [iptr->ihead++] = ch | cerr;
if (iptr->ihead >= IBUFLEN)

iptr->ihead = 0;
if (iptr->iecho)
echoch(ch,iptr,cptr);

if (scount (iptr->isem) < IBUFLEN)

signal (iptr->isem) ;

} else {

if (ch == iptr->ikillc && iptr->ikill) {
iptr->ihead -= iptr->icursor;
if (iptr->ihead < 0)

iptr->ihead += IBUFLEN,;

iptr->icursor = 0;
eputc (RETURN, iptr,cptr) ;
eputc (NEWLINE, iptr,cptr) ;
return;

+

if (ch == iptr->ierasec && iptr->ierase) {

if (iptr->icursor > 0) {
iptr->icursor--;

erasel(iptr,cptr);

An Example Device Driver Chapter 12 48

return;

if(ch = NEWLINE || ch == RETURN) {

+
ct

ct

if (iptr->iecho)
echoch(ch,iptr,cptr);
iptr->ibuff [iptr->ihead++] =
ch || cerr;
if (iptr->ihead >= IBUFLEN)
iptr->ihead = O;
/* +1 for \n or \r x*/
ct = iptr->icursor+i;
iptr->icursor = 0;
signaln(iptr->isem,ct);

return;

scount (iptr->isem) ;
ct <070 : ct;

if ((ct + iptr->icursor) >= IBUFLEN-1){

}

eputc (iptr->ifullc,iptr,cptr);

return;

if (iptr->iecho)

echoch(ch,iptr,cptr);

iptr->icursor++;

iptr->ibuff [iptr->ihead++] = ch | cerr;

An Example Device Driver Chapter 12

if (iptr->ihead >= IBUFLEN)
iptr->ihead = O;

49

An Example Device Driver Chapter 12 50

LOCAL erasel(iptr,cptr)
struct tty x*iptr;
struct csr *cptr;

char ch;
if (--(iptr->ihead) < 0)
iptr->ihead += IBUFLEN;
ch = iptr->ibuff [iptr->ihead];
if (iptr->iecho) {
if(ch < BLANK || ch = 0177) {
if (iptr->evis) {
eputc (BACKSP, iptrcptr) ;
if (iptr->ieback) {
eputc (BLANK, iptr,cptr) ;
eputc (BACKSP, iptr,cptr) ;

+

eputc (BACKSP, iptr, cptr) ;

if (iptr->ieback) {
eputc (BLANK, iptr,cptr) ;
eputc (BACKSP, iptr,cptr) ;

An Example Device Driver Chapter 12 51

+
} else {
eputc (BACKSP, iptr,cptr) ;
if (iptr->ieback) {
eputc (BLANK, iptr,cptr) ;
eputc (BACKSP, iptr,cptr) ;
+
+
} else

cptr->ctstat = SLUENABLE;

An Example Device Driver Chapter 12 52

[k
* eputc -- put one character in the echo queue
K
*/
LOCAL eputc(ch,iptr,cptr)
char ch;
struct tty *iptr;
struct c¢sr *cptr;
{

iptr->ebuff [iptr->ehead++] = ch;

if (iptr->ehead >= EBUFLEN)
iptr->ehead = O;

cptr->ctstat = SLUENABLE;

An Example Device Driver Chapter 12 53

13.10 Tty Control block Initialization

Procedure ttyinit initialize the tty control block and interrupt vectors, gives a

ptr to the devtab structure for that device

e Calls tosetvec:
sets interrupt and fills in interrupt dispatch table

e Initializes control block for raw or cooked mode, depending on whether

or not line corresponds to the console terminal.

e Creates input and output buffer semaphores and initialize ibuf, obuf,
ebuf

e After parameters, buffers, interrupt vectors have been set, it
— clears receiver buffer in hardware,
— enables recipient interrupt and

— disable transmitter interrupts

An Example Device Driver Chapter 12 54

/* ttyinit.c - ttyinit */

ttyinit(devptr)

struct devsw *devptr;

register struct tty *iptr;

register struct csr *cptr;

int junk, isconsole;

set up interrupt vecotr and interrupt dispatch table */

iptr = &tty[devptr->dvminor];

iosetvec(devptr->dvnum, iptr, iptr);

devptr->dvioblk = iptr; /* £ill tty control blk */

isconsole =

iptr->ioaddr

/* make console cooked x*/
(devptr->dvnum == CONSOLE) ;

= devptr->dvcsr; /* copy in csr address */

iptr->ihead = iptr->itail = 0; /* empty input queue */

iptr->isem

iptr->osem

screate(0); /* chars. read so far=0 */
screate (OBUFLEN) ; /*buffer avaliable=allx*/

An Example Device Driver Chapter 12 55

iptr->odsend = 0; /* sends delayed so far */
iptr->ohead = iptr->otail = 0; /* output queue empty */
iptr->ehead = iptr->etail = 0; /* echo queue empty */
iptr->imode = (isconsole ? IMCOOKED : IMRAW);
/* echo console input */

iptr->iecho = iptr->evis = isconsole;

/* console honors erase */
iptr->ierase = iptr->ieback = isconsole;
iptr->ierasec = BACKSP; /* using “h */

/* map RETURN on input */

iptr->icrlf = isconsole;

iptr->ecrlf
iptr->ocrlf = iptr->oflow = isconsole;

iptr->ikill = isconsole; /* set line kill == @ */
iptr->ikillc = ATSIGN;

iptr->osheld = FALSE;

iptr->ostart = STRTCH;

iptr->ostop = STOPCH;

iptr->icursor = 0;

iptr->ifullc = TFULLC;

cptr = (struct csr *)devptr->dvcsr;

junk = cptr->crbuf; /* clear receiver and */
cptr->crstat = SLUENABLE; /*enable in. interrupts */
cptr->ctstat = SLUISABLE; /*disable out. interruptx*/

An Example Device Driver Chapter 12 56

13.11 Device Driver Control

Ttycntl implements higher-level device independent 1/O procedure

control(descrp,func,addr,addr2)

descrp: index into device switch table

func: set which mode ?

Ttycntl controls a tty device by setting its modes, e.g.,

func == TCSETBRK : sets the ”break” bit in the SLU transmitter

placing the line in a break state

func == TCRSTBRK : turns off the break bit in the SLU transmitter

and returns the line to normal processing

func == TCMODER: sets mode field imode: raw
func == TCMODEC: sets mode field imode: cooked
func == TCMODEK: sets mode field imode: cbreak
func == TCECHO (TCECHON): control chars. echo
func == TCICHARS: allow the user to query driver

func =

An Example Device Driver Chapter 12 57

/* ttycntl.c - ttycntl */

ttycntl(devptr, func, addr)

struct devsw *devptr;

int func;

char *addr;

{
register struct tty *ttyp;
char ch;
char pSs;

ttyp = &ttyldevptr->dvminor];
switch (func) A
case TCSETBRK:
ttyp->ioaddr->ctstat |= SLUTBREAK;
break;
case TCRSTBRK:
ttyp->ioaddr->ctstat &= “SLUTBREAK;
break;
case TCNEXTC:
disable(ps);
wait (ttyp->isem) ;
ch = ttyp->ibuff [ttyp->itaill;

An Example Device Driver Chapter 12

restore (ps) ;
signal (ttyp->isem) ;
return(ch) ;
case TCMODER.:
ttyp->imode

IMRAW;
break;

case TCMODEC:
ttyp->imode

IMCOOKED;
break;

case TCMODEK:
ttyp->imode

IMCBREAK;
break;

case TCECHO:
ttyp->iecho = TRUE;
break;

case TCNOECHO:
ttyp->iecho

FALSE;
break;
case TCICHARS:
return(scount (ttyp->isem)) ;
default:
return(SYSERR) ;
}
return (0K) ;

o8

