System Initialization Chapter 13 1

Introduction

e Many microcomputers require no more than what’s been discussed in
chapters 1-12:

— a process manager to support concurrent computations, and the

means to transform information to and from running programs.

e It makes sense to consider initialization now, because subsequent

chapters describe pieces of the system that are more or less optional

e chapters 1-13 describe so-called micro-kernel (system kernel).

System Initialization Chapter 13 2

13.1 Starting from scratch

e A crash occurs when hardware executes an invalid operation caused

because code or data in the operating system has been destroyed
e A crash means the contents of memory have been corrupted or lost

How can a machine, devoid of valid programs, spring into action and begin

executing ?
IT CANNOT !

e Somehow a program must be deposited in memory before the machine

can start.
e On the oldest computers this happened by hand, using switches.

e Later standard keyboards built to that purpose, i.e. special terminals,
now micro-and mini-computers are used to load the initial program from

tape or disk storage attached to the micro.

The microcomputer itself has its initial program in read-only memory

encoded, so it can restarts without help from other machines.

System Initialization Chapter 13 3

Once the initial program has been loaded, the CPU can executed the
startup program witch reads a larger program (usually from a special

location on a specific disk)

Then the CPU branches to a larger program which reads the entire

operating system into memory, and branches to its beginning
This process is called rebooting the system

When the CPU begins executing the operating system code, the system

must initialize devices and system data structures:

process table proctab, semaphore table semaph//, ready list, interrupt

dispatch table intmap//, device control blocks, memory.

It must also check for and repair, damage to the linked lists and disk
ptrs in the system

System Initialization Chapter 13 4

13.2 Booting Xinu

Xinu is downloaded from another machine called its host :

The host computer generates a break condition to halt 11/2 processor

11/2 responds in Octal Debugging Technique (ODT) mode:

— it sends a prompt and recognizes commands to display and change

memory locations and registers

Host loads initial program in 11/2 memory starting at location zero, and

starts 11/2 executing it.

Initial boot program (sent from host to 11/2) reads characters, using

polled I/O and deposits them in memory starting at highest location
When finished, host sends a break, forcing 11/2 into ODT mode
When ODT responds, host starts executing on 11/2 sent boot program

Host and second boot program communicate, with the host sending
”packets” of bytes (once-at-a-time), and boot program acknowledging

receipt or requesting transmission.

Host (either) tells second bootstrap to branch to the start of Xinu (or to
halt and wait for ODT commands)

Host directs second bootstrap to branch to Xinu and CPU begins
executing start (at 01000 octal).

System Initialization Chapter 13 5

14 System startup

The startup program creates the environment which a C-program

expects; then it jumps to the C-procedure nulluser

Start is located at 01000 octal -the first location beyond the interrupt

vectors.
start disables interrupts and establishes a void stack.

Since memory size is unknown (the stack should start at the high-end of
memory and grows downward) finding the memory size is done by calling

procedure at sizmem

To guarantee that stackptr SP is valid while sizmem runs, startup sets
stackptr to kernstk, i.e. 300 decimal bytes, set up in the data area, and

used when usual stack cannot be used.

As its last instruction start jumps to nulluser

See code below !

System Initialization Chapter 13 6

/* startup.s - start */

DISABLE = 340 / PS to disable interrupts

[k -

/* Xinu system entry point -- first location beyond

/* interrupt vectors

[k -
.globl start

start:
mtps $DISABLE / Disable interrupts
mov $kernstk,sp / Set up temporary stack pointer
jsr pc,sizmem / _maxaddr set to max address
mov _maxaddr,sp / switch stack to high memory
reset / reset bus
clr r5 / clear initial r5 for debugging
clr rd

jmp _nulluser / Jump to C startup routine

System Initialization Chapter 13 7

14.1 Finding the size of memory

The highest valid memory address is found by:

encoding the highest possible mem. address in _maxaddr and then referencing

successively smaller addresses until one is found causing no exception

/* sizmem.s - sizmem */

MAXADDR = 157776 / Maximum possible me. address
DISABLE = 340 / PS to disable interrupts
ENABLE = 000 / PS to enable interrupts
EXCPPC = 4 / exception vector address for
EXCPPS = 6 / "memory out of range'" errors

System Initialization Chapter 13 8

A et ettt T L
/* sizmem -- placing highest valid address in _maxaddr
[k
.globl sizmem
Sizmem:
mfps -(sp) / save incoming PS
mtps $DISABLE / disable interrupts
mov r0,-(sp) / save registers used
mov *$EXCPPC,-(sp) / save old contents of
mov *$EXCPPS,-(sp) / exception vector
mov $siztrap,*$EXCPPC / set up vector to catch memory
mov $DISABLE,*EXCPPS / exception; disable interrupts
mov $MAXADDR, r0 / set r0 to highest possible loc
sizloop:
mov (r0), (r0) / reference what rQ points to
mov r0, _maxaddr / no interrupt - memory exists.
mov (sp)+,*$EXCPPS / restore exception vector
mov (sp)+,*$EXCPPC
mov (sp)+,r0 / restore r0
mtps (sp)+ / restore PS
rts PC / return to caller
siztrap:
add $4,sp / pop interrupted PC and PS
sub $2,r0 / move to next lower address

jbr sizloop / try again

System Initialization Chapter 13 9

14.2 Initializing system data structures

startup.s and sizmem.s do nothing more than create a valid run-time
environment for C by setting the stackptr to the highest valid memory

address.

A single program is running - start up - when the CPU jumps to nulluser

System Initialization Chapter 13 10

/* initialize.c - nulluser, sysinit */

#include <conf.h>

#include <disk.h>

extern int main(); /* address of user’s main prog

/* Declarations of major kernel variables */

struct pentry proctab[NPROC]; /* process table
/* next process slot to use in create

int nextproc;
struct sentry semaph[NSEM]; /* semaphore table

/* next semaphore slot to use in screat
int nextsem;
struct qgent q[NQENT] ; /* q table (see queue.c)
int nextqueue; /* next slot in g structure to use
int *maxaddr; /* max memory address (set by sizmem)

#ifdef NDEVS
struct intmap intmap[NDEVS]; /* interrupt dispatch table
#endif

struct mblock memlist; /* list of free memory blocks
#ifdef Ntty
struct tty tty[Nttyl; /* SLU buffers and mode control

#tendif

*/
*/

*/

ex/

System Initialization

/* active system status */

int numproc; /*
int currpid; /*
int reboot = 0; /%

/* real-time clock variables
* queue pointers */
#ifdef RTCLOCK

Chapter 13 11

number of live user ptocesses
if of currently running process
non-zero after first boot

and sleeping processes

int count6; /* counts in 60ths of a second 6-0

int defclk; /* non-zero, then deferring clock count

int clkdiff; /* deferred clock ticks

int slnempty; /* FALSE if the sleep queue is empty

int *sltop; /* address of key part of top entry in
/* the sleep queue if slnonempty-TRUE

int clockq; /* head of queue of sleeping processes

int preempt; /* preemption counter. Current process

/* is preempted when it reaches zero;

/* set in resched; counts in ticks
int clkruns; /* set TRUE iff clock exists by setclkr
#else /* no clock configured; be sure sleep
/* doesn’t wait forever
int clkruns = FALSE;
#endif

/* head/tail of ready list (q indexes)

int rdyhead,rdytail;

*/
*/

System Initialization Chapter 13 12

/oK sk ok ok ok ok sk ok ok ok ok ok sk ok sk ok s ok sk ok sk ok sk ok sk ok sk ok sk ok sk ok skok sk ok ok sk sk ok sk sk ok sk ok sk ok kok sk ok skok ok ok /
/** Note: *x /
/** This is where the system begins after the C enviroment **/
/** has been establisched. Interrupts are initially DISABLED**/
/** and must eventually be enabled explicitly. This routine **/
/** turns itself into the null process after initialization.**/
/** Because the null process must always remain ready to ** /
/** run, it cannot execute code that might cause it to be *x/
/** suspended, wait for a semaphore, or put to sleep, or *% /
/** exit. In particular, it must not do I/0 unless it uses *%/

/** kprintf for polled output. ** /
/[** *%)

/***/

[k
* nulluser -- initialize system and becom the null process
* (id = 0)
X———-————————_—_-—_—_—_-—-:—-:- - -C: .- mm-m—Em—mm—mE—mE—mE—mE—mEm—mE—mE—mEmE—mE—mE—mE—mE—mE—mE—mE—E—Epreee e — ——

System Initialization Chapter 13 13

nulluser() /* babysit CPU when no one home */
{
char pPS;
kprintf ("\n\nXinu Version %s", VESION);
if (reboot++ < 1)
kprintf ("\n") ;
else
kprintf (" (reboot %d)\n", reboot);
sysinit () ; /* initialize all of Xinu */
kprintf ("%u real mem\n", (unsigned)maxaddr +
(unsigned)sizeof (int));
kprintf ("%u avail mem\n", (unsigned)maxaddr-
(unsigned) (&end) + (unsigned) sizeof (int)) ;

enable () ; /* enable interrupts */
/* start a process exectuing the user’s main program */

resume (
create(maiin,INITSTK,INITPRIO,INITNAME,1,0)
);
while (TRUE) { /* run forever without actually x*/

pause() ; /* executing instructions */

System Initialization Chapter 13 14

[k
* sysinit -- initialize all Xinu data structures and devices
K e e e e
*/
LOCAL sysinit()
{
int i,3;

struct pentry *pptr;
struct sentry *sptr,

struct mblock *mprt;

numproc = 0; /* initialize system variables */

nextproc = NPROC-1;

nextsem = NSEM-1;

nextqueue = NPROC; /* q[0..NPROC-1] are processes */
/* initialize free memory list */

memlist.mnext = mptr = (struct mblock*) roundew(&end);

mptr->mnext = (struct mblock *)NULL;

mptr->mlen = truncew((unsigned)maxaddr-NullSTK-

(unsigned)&end) ;

for(i=0 ; i<NPROC ; i++) /* initialize process table */
proctab[i] .pstate = PFREE;

/* initialize null process entry */

System Initialization Chapter 13 15

pptr = &proctab [NULLPROC] ;
pptr->pstate = PRCURR;
for (j=0 ; j<7 ; j++)
pptr->pname[j] = "prnull"[j];
pptr->plimit = ((int)maxaddr) - NULLSTK;
pptr->pbase = maxaddr;
pptr->paddr = nulluser;
pptr->pargs = 0;
currpid = NULLPROC;

for (i=0 ; i<NSEM ; i++) { /* initialize semaphores */
(sptr = &semaph[i])->sstate = SFREE;

sptr->sqtail = 1 + (sptr->sqhead = newqueue());

/* initialize ready list */
rdytail = 1 + (rdyhead=newqueue());

#ifdef MEMMARK

_mkinit () ; /* initialize memory marking */
#endif
#ifdef RTCLOCK

clkinit (); /* initialize r-t clock */
#endif
#ifdef Ndsk /* initialize disk buffers x/

dskdbp= mkpool (DBUFSIZE,NDBUFF) ;

System Initialization Chapter 13 16

dskrbp= mkpool (DREQSIZ,NDREQ) ;
#endif

for (i =0 ; i<NDEVS ; i++) /* initialize devices x/

init (i) ;

#ifdef NNETS

netinit(); /* initialize networks x/
#endif

return(0K) ;

System Initialization Chapter 13 17

nulluser

Nulluser is simple:

It calls sysinit to do the initialization

When sysinit returns, the running program has been made into process

0, with interrupts disabled, and no other process existing

After printing a few messages nulluser, enables interrupts and calls

create to start a process running the user’s main program.

Because the process executing nulluser has become the null-process, it

cannot exit, sleep, wait for a semaphore, or suspend itself.

After initialization is completed, and a process has been created to

execute the user’s main program

— the nulluser process just becomes an infinite loop, capable of reacting
to interrupts and giving resched a process to schedule to when no user

process are ready to run.

nulluser requires a special print procedure kprintf, to waits etc., using
polled 1/0

System Initialization Chapter 13 18

14.3 Transforming the program into a process

Where is the program turned into a process 7

e Procedure sysinit performs the system initialization.

— It initialize the system’s data structures, like the semaphore table,

g-structure, process table, free memory list etc.
— It initialize clock routines by calling clockinit
— Finally. it calls nit once for each system device.
— Procedure init calls the device initialization routines indirectly
through devtab
e Most interesting: filling in the process-table fields for process zero.

— The real work is done by tow lines:

assigning the process-table fields PRCURR, and
currpid = NULLPROC

e Only after these values are assigned, rescheduling becomes possible:
the program becomes a currently running process that resched can

identify as process 0.

System Initialization Chapter 13 19

14.4 The map of low core

/* lowcore.s - (map of interrupt vectors in low part of mem.)*/

DISABLE = 340 / PS to disable interrupts
ENABLE = 000 / PS to enable interrupts
[k -
/* absolute location O -- fixed interrupt and exception
/* vectors
[k -
= 000" . / panic because something jumped
jmp panicO / to location zero
= 004~. / bus error (e.g., malfunction)
panic; DISABLE+0
= 010~. / illegal/revesed instruction
panic; DISABLE+1
= 014-. / BPT instruction and T bit
panic; DISABLE+2
= 020". / Input/Output trap
panic; DISABLE+3
= 024-°. / Power fail
panic; DISABLE+4
= 030~. / EMT instruction, emulator trap

panic; DISABLE+5

System Initialization Chapter 13

= 034". / TRAP instruction
panic; DISABLE+6

= 040".

panic; DISABLE+7

= 044"

panic; DISABLE+7
(repeated for all locations throug 774)

20

