An Overwie Of The Machine and Run-Time Enviroment Chapter 21

1.1 The Machine

The machine used here is a Digital Equipment Corporation LSI 11/2 16
bit microprocessor.

A microcomputer version of the PDP II.

Discussed:
® processor
® memory
e communication devices
e architrave
e asynchronous communication devices
e disk storage devices

e mechanisms like :
— stack
— vectored interrupts

— device addressing

An Overwie Of The Machine and Run-Time Enviroment Chapter 22

1.2 LSI 11/2 Physical organization

The LSI 11/2 constructed from:
Printed Circuit Boards
Slotted into the sockets of a backplane see figure 1.1

These sockets are wired together to form a Bus (the Q-bus) consisting of:
e power lines attached to all board in in parallel

e lines linking up the sockets for inter-board communication :

Signals travels to the board on one contact and away on another.

Boards :

e One board contains the 11/2 processor itself:

at the beginning of the bus.

e other boards contain memory or device interfaces I/O devices.

An Overwie Of The Machine and Run-Time Enviroment Chapter 23

Communication between boards:

e A board communicate withe another board by passing signals across
the bus

e E.g.. when the processor board needs to write int memory, it places
address + data on the bus for the memory board to retrieve and
store.

e memory is logical contiguous

— each board contains switches (hardwired jumpers) that can be
changed:

It is possible to configure tow identical memory boards so that
one responds to low memory addresses and other to high
address

— Similarly, I/O devices interface boards contains such switches to
represent tow distinct devices.

e The physical order of boards along the QQ-bus determines their
priority

e Signals enter a board one connector and leave it on another one so
the board can decide whether to intercept the signal or pass it on
down the bus.

e Example: tow devices waiting for service

— The CPU sends a grant signal down the bus.

An Overwie Of The Machine and Run-Time Enviroment Chapter 24

— It passes from board to board until it reaches a board ready for

service.

— The first board with a device waiting responds to the signal

without passing it on.

— Boards further down the bus wait until the CPU finishes

servicing the first board and reissue the grant signal.

An Overwie Of The Machine and Run-Time Enviroment Chapter 25

1.2.1 Logical Organization Of The 11/2

S The Operating system is concerned with the logical organization of the

machine, not its physical organization.

An Overwie Of The Machine and Run-Time Enviroment Chapter 26

1.2.2 Registers In The LSI 11/2

Hier kommt Figur 2.2

An Overwie Of The Machine and Run-Time Enviroment Chapter 27

1.2.3 The Address Space

e Memory divided into 8-bit quantities called bytes - also called
characters -
with the byte being the smallst addressable unite.

e Most instructions operate on tow bytes (a word)

The operation can alwys affect the addressed byte and the next
higher byte.

e Figure 2.4 :
— 11/2 addresses 64k bytes of memory (k = 1024)

— addresses formulated in octal.

Hier kommt Figure 2.3

An Overwie Of The Machine and Run-Time Enviroment Chapter 28

1.2.4 Vectored Interrupts

The Le LSI 11/2 uses the vectored interrupts scheme for handling

exception and interrupts from external devices.

Whenever an external device must communicate with the processor :
the device places a signal on the interrupt bus line
If the processor runs with the interrupts enabled
it checks the interrupt line after executing every instruction

To handle an interrupt, the processor sends an acknowledgement over
the bus, requesting the interrupting device to return an interrupt
vector address (IVA)

An Overwie Of The Machine and Run-Time Enviroment Chapter 29

The first device with a pending request receive the acknowledgement and

responds by returning its interrupt vector address v.

hen the CPU receives the vectorv from the Q-bus
e the processor pushes current value of PC and PS on the stack, and

e loads a new PC and PS from tow words in memory starting to

location v, and
e continues execution at the new location addressed by the PC.

See the figure below.
Each device is assigned a unique IVA, enabling the system software to

(identify /distinguish) among them.

The PC stored at v points to an interrupt service routine (interrupt

handler) for the interrupting device.

The interrupt "acts” line a procedure call ”inserted (invisibly) by the

hardware in between tow instructions in user’s code”

10

An Overwie Of The Machine and Run-Time Enviroment Chapter 210

The processor executes the code in the interrupt routine returning to the

place where the user’s process are interrupted.

Hier Kommt eine Figure

To make the interrupt invisible (transparent) to the running
program,

the interrupt handler must save and restore the state of the machine.

On the 11/2: saving the state means saving R0O-R6, since the
hardware saves R7 (i.e., PC) and PS.

In practice R6 (i.e., PS) need not b saved

provided the interrupt routine pops off before returning whenever it
pushed on the stack before, restoring the stack to its original position

To prevent an interrupt routine from itself being interrupted, the
stored PS (in the IVA) specifies a priority level 7, i.e,

As soon as interrupt processing begins, the processor operates with
interrupt disabled.

Interrupt processing ends when the processor

execute a "return from interrupt” instruction (rti,rtt),

the old value of the PC and PC are restarted (before executing the
interrupt) from the stack, and

returning the SP to its original value.

receiving the action taken by the processor when it detected the
interrupt, allowing processing to continue as if nothing had

11

An Overwie Of The Machine and Run-Time Enviroment Chapter 211

happened !

An Overwie Of The Machine and Run-Time Enviroment Chapter 212

1.2.5 Exceptions

Exceptional condition are handled like interrupts.

Example (exceptions):
e reference to nonexistent memory
e executing of invalid instruction code
e power failure
2 e hardware detected error
Similarly as above :
e PC and PS are pushed onto the stack

e New values for PC and PS loaded from memory.

Exception vectors are permanently assigned to memory locations 0-27.

They, unlike interrupts, can not be disabled by changing the priority

level.

|3

An Overwie Of The Machine and Run-Time Enviroment Chapter 213

1.2.6 Asynchronous Communication

An asynchronous communication device, the serial line unit,

sends and receive characters (to/from a conventional terminal).

At least one board in any 11/2 system contains such a device,

connecting the computer to a terminal.

Cable connecting the device to terminal. consists of three wires:
1. carries data into the computer
2. carries data away from the computer

3. ground voltage wire
Signals are serial because they travel down the line one bit-at-a-time

Signals are asynchronous because the transmitter sends a character
whenever one is available
there is no synchronization between the transmitter and receiver to

control the start of a character.

The work to convert characters into a series of pulses or to covert a
series of pulses into characters is carried out by a single integrated

circuit (IC) controlled by precise clock called (UART) Universal
Asynchronous Receiver and Transmitter.

Errors occur when a receiver can not make series out of the signals it
receives.

The receiver itself holds one character at a time.

CPU must extract each character before subsequent characters arrive

An Overwie Of The Machine and Run-Time Enviroment Chapter 214

or the receiver indicates an overrun condition and replace the earlier

character with the latest one.

An Overwie Of The Machine and Run-Time Enviroment Chapter 215

1.2.7 LSI 11 Asynchronous Serial Line Hardware

5 Conceptually:

asynchronous transmitter and receiver grouped into pairs consisting of

one receiver and one transmitter to model tow-way communication.

|6

An Overwie Of The Machine and Run-Time Enviroment Chapter 216

1.2.8 Addressing a Serial Line Unit

CPU containing device interfaces watch the bus for addresses

corresponding to their devices, and respond accordingly.

From the programmer’s pint of view, each SLU (Serial Line Unit

contains 4 16-bit registers, see figure 2.5

RCSR (receive control and status)
RBUF (receiver data buffer)

XCSR (transmitter control and status)
XBUF (transmitter data buffer)

To communicate with the device, a program reads or writes the
address corresponding to the device register address, just as it reads

or writes to a real memory address.
Device registers are not storage locations.

Rather, the interface board(containing the device) intercepts the
transfer and interprets it as an instruction to :

1. transfer data between the device and CPU

2. control the device

An Overwie Of The Machine and Run-Time Enviroment Chapter 217

Examples :

1. Writing a character to the XBUF register causes the SLU to capture
that character and throwing it down to the SLU.

Once the board accepts a character, it operates independent of the
CPU (processing continues while the transmitter sends the

7 character).

2. CPU receives a character received over the SLU by reading from the
RBUF address, see figure 2.6 below.

———- Hier kommt eine Figure——-
RBUF read only : write directed to that address are ignored.

Accessing RBUF has an side effect of clearing the receiver and enabling

it receive the next character.

|8

An Overwie Of The Machine and Run-Time Enviroment Chapter 218

1.3 The C Run-Time Environment

Operating System are written in heigh-level language to make them

easier to write, understand, debug, and move to other machines.

However, sometimes machine assembly language procedures are

introduced because :

machine quantities must be manipulated, e.g. for :
saving and restoring the machine’s registers context-switching code,
interrupt routines manipulating the process table, implementing

semaphores

RY

An Overwie Of The Machine and Run-Time Enviroment Chapter 219

The C compiler expects each program to run in an address space as
shown in figure 2.14.

HIER KOMMT EINE FIGURE

Symbols _etext, _edata, _end refer to global variables inserted into

object code by the loader.

They are initialized to first address beyond text, data, bss segments
respectively .

Thus running program can find out how much free memory remains
between end of loaded part and the current top of the stack by taking
the address of _end.

e text segment : contains text of main program and all its procedure.
e data segment : contains all initialized data.
e bss segment : contains all uninitialized data.

e stack segment : occupies highest part of address space and grows

downward

e heap storage : allocated from _end upwards, i.e., from the bottom

of the free space.

An Overwie Of The Machine and Run-Time Enviroment Chapter 220

In Xinu:

e When it runs, multiple processes have stack allocated as
in figure 2.15
HIER KOMMT EINE FIGURE

e For each process is separate stack allocated from the
highest available free space, so stack overflow in one

process destroys stacks of other processes.

e Stack space returned to free space whenever process exits.

An Overwie Of The Machine and Run-Time Enviroment Chapter 221

Convention for translating procedures in the

C-compiler

e A is calling procedure
e B the called procedure

How is the code of calling B within the procedure body of A

in C’s compiler ?

1. Values of actual parameters of B pushed on stack (in

reverse order)

2. Address of return address in A, i.e., of the instruction

follwing call to B pushed on the stack
3. Flow of control branches to B
2 + 3 curried ou t by calling
jsr pc, address-of-B

Calling procedure, A, also responsible for popping B’s args

from the stack after the called procedure, B, returns.

An Overwie Of The Machine and Run-Time Enviroment Chapter 222

Code translating called procedure B :

The called procedure is responsible for:

e saving and restoring the machine state, i.e., the contents

of the used registers

e popping the return address from the stack before

returning by calling
rts pc
Hardware provides a single instruction
rts pc

that pops an address from the stack and returns to that

address.

e Saving the contents of the used registers is done by

calling assembly language routines csv.

e Restoring the contents of the used registers is done by

calling assembly language routine cret

csv and cret :
csv - C registers save routine

cret - C registers restore routine

An Overwie Of The Machine and Run-Time Enviroment Chapter 223

To save the machine registers, the compiler inserts a call to
csv, an assmbly language routin.

CSV:
e saves the register
e jumps back to called routin B

When code for B is finished, compiler inserts call to
assembly language routine cret, to restore the values of
machine’s registers and the stackpointer sp (i.e., R6) and
to return control to the original caller:

cret :
e restore old values of machine registers
e restore sp

e returns control to original caller

An Overwie Of The Machine and Run-Time Enviroment Chapter 224

Code for B :

/* csv.s - csv, cret x/

/* C register save: upon entry here, procedure A has called B */
/* and B has called csv to save registers. r5 contains return */
/* address in B. The stack has old r5, return address in A, and */
/* arguments on it. C return: cret (below) is used to restore */

/* regs when the called proc. exits * /

.glob csv, cret

[e */
/* csv -- C register save routine
[e */
csv

mov r5,r0 / rO not saved at call (C convention)

mov Sp,rb5 / r5 points to called routine’s frame

mov r4,-(sp) / push r4 -r2 on stack

mov r3,-(sp)

mov r2,-(sp) /jsr pushes PC onto stack hoes to

jsr pc,(r0) / address in rO (originally in r5)
[*/
/* cret -—- C register restore routine
[K e */
cret

mov r5,r2 / put copy of called frame ptr in r2

mov -(r2),r4 / reload r4 - r2 from start of frame

mov -(r2),r3

An Overwie Of The Machine and Run-Time Enviroment Chapter 225

mov -(r2),r2
mov r5,sp / restore SP
move (sp)+,r5 / restore rb5 on stack by call

/ to csv procedure entry

rts pPcC

