Scheduling and Context Switching Chapter 4 1

4.1 Context switching

What is Context switching ?

Operating system achieves the illusion of concurrent processing by

rapidly switching one processor among several computations

Context switching at the heart of the processor juggler act :

consists of stopping the current computation, saving informations needed for

restarting it later, and starting a possibly different one.

Why is this job difficult ?

The CPU can not be stopped at all- it continues to execute code until it

switches to another process.

Scheduling and Context Switching Chapter 4 2

This chapter describes basic context switch mechanism showing :
e how a process saves its state informations
e chooses another process to run
e return control to that process.

It describes also the basic data structure, the process table, holding all

information about processes.

Scheduling and Context Switching Chapter 4 3

4.2 Process Table

Information about processes kept in process table proctab, an array of

structure pentry :
e One entry for each process in this table

e Because only one process running at the time,

one of these entries is out of date, since corresponding with the currently

active process.

e The other entries correspond to processes witch are temporarily halted.

Scheduling and Context Switching Chapter 4 4

Exactly what information must be saved in proctab ?

All values that will be destroyed when another process runs.

E.G., since in Xinu each process has its own segment of the stack, no

copy of the stack needs to be saved.

However new process will change the contents of the machine registers,

so this must be saved.
Also: information used to control process and account for its resource.

Processes are referenced by their process id, witch is the index of the

saved-state-info in proctab

pbase, pstklen, plimit used ti free memory space when process completes.

/* proc.h - isbadpid */

Scheduling and Context Switching

/* process table declaration and defined

#ifndef
#define
endif

NPROC
NPROC

10

/* process state contents */

#define
#define
#define
#define
#define
#define
#define

PRCURR
PRFREE
PRREADY
PRRECV
PRSLEEP
PRSUSP
PRWAIT

\01’
\02
\03’
\04’
)\05’
\06”
0T

/ *
/ *

/%

set the
allowed

process
process
process
process
process
process
process

/* miscellanous process definetions */

#tdefine
#tdefine
#define

##define

PNREGS
PNMEN

NULLPROC

isbadpid(x)

Chapter 4 5

contents */

number of processes */
if not already done */

is currently running */

slot is free */
is on ready queue */
waiting for message */
is sleeping */
is suspended */

is on semaphore queuex/

size of saved register area */
length of process "name" * /
id of the null process; it */
is always eligible to run */

(x<=0 || x>=NPROC)

Scheduling and Context Switching Chapter 4 6

/* process table entry */

struct pentry A

extern
extern
extern

extern

char

short
short
short
short
short
short
short
short
char

short

short

struct pentry proctab[];

int
int

int

pstate;

pprio;

pregs [PNREGS] ;
psem,;

pmsg;

phasmsg;
pbase;
pstklen;
plimit;

pname [PNMLEN] ;
pargs;

paddr;

numproc,
nextproc;

currpid;

/ *
/ *
/ *

/%

/ *

/ *
/%

process state: PRCURR, etc */
process priority */
saved regs. RO-R5, SP,PC,PS */
semaphore if process waiting*/

message sent to this waiting*/

nonzero if pmsg is vaild */
base of run time stack */
stack length */
lowest extent of stack */
process name x/
initail number of arguments */

initial code address x/

currently active processes */

search for free slot */

Scheduling and Context Switching Chapter 4 7

4.3 Process State

e Needed for checking validity of operations performed on a process.

Scheduling and Context Switching Chapter 4 8

4.4 Selecting A Ready Process

e A process is classified as ready when it is eligible for CPU but not

currently executing.
e The single process served by the CPU is classified as current.

e Switching context involves :
— selecting a process from those that are ready or current

— giving control to selected process

Scheduling and Context Switching Chapter 4 9

Scheduler :

Software implementing the policy to select a process from among those that

are ready or current is called scheduler.

Xinu policy :

e At any time, the highest priority process eligible for CPU service is

executing.

e Among processes with equal priority scheduling is Round Robin :

— all processes with equal priority are selected one-after-one so that all
members of this set are executed before any member has a second

opportunity.
Priorities :
e kept in pprio-field of process table entry, are positive integers.

e All ready processes appear in the ready list ordered by priority .

Scheduling and Context Switching Chapter 4 10

e In Xinu : current process not on ready list, it its process id gives by

global variable currpid.

e What happens to current executing process during a context switch ?

— After, it remains eligible to use CPU, even when control is
temporarily passed to another process, its current process state
changes to PRREADY and it is moved to ready list for later CPU

service.

e How dose the rescheduler, resched, decide whether to move current

process to ready list ?

— If current process is not eligible to use CPU, the system routines
assign to its pstate-field a desired next state before calling resched:
* See e.g. in suspend, pg. 69[comer]

* See e.g. in kill, pg. 71[comer]
— When resched prepares to switch context, it checks pstate-field of

current process and makes it ready for executing CPU, only if its
pstate is PCURRENT.

Scheduling and Context Switching Chapter 4

Resched :

selects a process to run

changes process table for that entry

removes new process from ready list and makes it current
update currpid

rests preemption counter

calls ctzsw
(optr <-- pregs, nptr <--pregs)

to save and reset the machine registers.

See code on the next slide!.

11

Scheduling and Context Switching Chapter 4 12

/* resched.c - resched */

#include <conf.h>
#include <kernel.h>
#include <proc.h>
#include <q.h>

[k
* resched -- reschedule processor to highest priority ready
* process
* Notes: Upon entry, currpid gives current process id.
* Proctab[currpid] .pstate gives correct NEXT state
* for current process if other than PRCURR.
K
*/
int resched ()
{ /* pointer to old process entry */

register struct pentry *optr;
/* pointer to new process entry */
register struct pentry *nptr;

/*no switch needed if current process priority higher than next*/
if (((optr= &proctab[currpid])->pstate == PRCURR) &&
(lastkey(rdytail)<optr->pprio))
return(0K) ;

Scheduling and Context Switching Chapter 4 13

/* force context switch */

if (optr->pstate == PRCURR){
optr->pstate = PREADY;
insert(currpid,rdyhead,optr->pprio) ;

}

/* remove highest priority process at end of ready list */

nptr = &proctab[(currpid = getlast(rdytail)) 1;
nptr->pstate = PRCURR; /* mark it currently running */
#ifdef RTCLOCK
preempt = QUANTUM;
#endif
ctxsw(optr->pregs,nptr->pregs) ;

/* The OLD process returns here when resumed. */
return(0K) ;

Scheduling and Context Switching Chapter 4 14

Which processes call resched ?

Answer: The process which is executed under Xinu on this exact moment.

See : process state diagram below.

e Also resched() is a normal procedure, and calling it results in executing

it like a normal procedure.

o int resched(){ ... ctxsw(optr-;pregs,nptr-spregs);
return address : return(OK)}

e ctxsw is not a normal procedure call. SO after executing it one dosen’t

return immediately to the return address.

Scheduling and Context Switching Chapter 4 15

CtXsSW(...,...)

e Code of ctzsw(,) is machine dependent because machine registers should

be saved by it.

e PC must be changed last to give the CPU the opportunity executing the

new process (and not earlier), once information about old process stored

in proctab und stack.

e On the 11/2:

the rtt instruction pops both PS and PC from the stack, and reload

them in one step.

After saving regs associated with the old process in the register save

area of that process

ctrsw switches stack to new process stack, restore the values of new

registers
after having pushed new values of PS and PC on stack

it resets the PS and PC in one go by calling rtt

Scheduling and Context Switching Chapter 4 16

ctxsw
Calling procedure pushes the call’s actual arguments on the stack in reverse
order, pushes the return address on the stack, and then branches to the

called routine.

Scheduling and Context Switching Chapter 4 17

/* ctxsw.s - ctxsw */

/* ctxsw —— actually perform context switch, saving/loading
/* registers

/ The stack contains three items upon entry to this routine :

/

/ SP+4 => address of 9 word save area with new
/ registers + PS

/ SP+2 => address of 9 word save area for old
/ registers + PS

/ SP => return address

/

/ The saved state contains of : the saved values of RO-R5
/ upon entry, SP+2, PC equal to the return address, and
/ the PS (i.e., the PC and SP are saved as if the calling

/ process had returned to its caller).

.globl _ctxsw / declare the routine name global
_ctxsw: / entry point to context switch

mov r0,*2(sp) / Save old RO in old register area

mov 2(sp) ,r0 / Get address of old register area

add $2,r0 / in RO; increment to saved pos.ofR1

mov rl,(r0)+ / Save registers R1-R5 in successive

Scheduling and Context Switching Chapter 4 18

mov
mov
mov
mov
add

mov
mov
mfps

mov

mov
mov
mov
mov

mov
mov
mov
mov

mov
rtt

r2,(r0)+ / locations of the old process
r3,(r0)+ / register save area. (r0)+ denores
rd,(r0)+ / indirect reference and, as a side
r5,(r0)+ / effect, incrementing rO to next word.
$2,sp / move sp beyond the return address,

/ as if a return had occurred.

sp, (r0)+ / save stack pointer
-(sp),(r0)+/ Save caller’s return address as PC
(r0) / Save processor status beyond registers
4(sp) ,r0 / Pick up address of new registers in RC

/ Ready to load registers for the new

/ process and abandon the old stack.

2(r0),r1 / Load R1-R5 and Sp from the saved are
4(r0),r2 / for the new process.
6.(r0),r3 / Note: dot following a number makes i
8.(r0),r4 / decimal; all others are octal
10.(xr0),r5

/ Have now actually switched stack
12.(x0),sp

/ Push new process PS on new process s
16.(r0) ,-(sp)

/ Push new process PC on new process
14.(r0) ,-(sp)
(r0),r0 / Finally, load RO from new area
/ Load PC, PS, and reset SP all at on

Scheduling and Context Switching Chapter 4 19

4.5 Null Process

e resched() resumes that at least one process is available on the ready
queue

it dose not bother to verify whether ready list is empty, so :
Resched can only switches context from one process to another, so at
least one process must always remain on ready queue.
e To ensure that a ready process always exists

— Xinu creates an extra process, the null process, when it initializes

the system.

— It has pid zero and pprio zero; it is code contains of an infinite loop

e Because user processes have all priority ; O,

— the scheduler switches to the null process only when no user process

ready to run
e So null process current running when processes deadlock

e When the real time clock interrupt routine decreases runtime clock until

new process, if any. get ready run when their time expires.
b)

e These are then put on ready queue, after which resched is called.

Scheduling and Context Switching Chapter 4 20

4.6 Making A Process Ready

Making a process eligible for CPU service accuse so often that a special

procedure has been designed to do so

ready(pid,resched)

e In principle putting a process on the ready list schould result in a call to

reshed to make sure that the process with the highest priority is running

e However, sometimes this results in a too heavy overhead in execution

time when many processes are put on the ready queue

e Then all these processes are put in one go on the ready list without
rescheduling after which resched() is called to make sure that the process

with the highest priority is running.

e Thus construction is made possible by providing read(..,..) with a
boolean argument RESCHEDNO/RESCHEDYES determining
whether resched(...,resch) is called.

See the code below !

Scheduling and Context Switching Chapter 4 21

/* read.c - ready */
#include <conf.h>
#include <kernel.h>
#include <proc.h>
#include <q.h>

[k
* ready -— make a process eligible for CPU service
K
*/
int ready (pid, resch)
int pid; /* id of process to make ready */
int resch; /* reschedule afterward * /
{

register structer *pptr;

if (isbadpid(pid))
return(SYSERR) ;

pptr = &proctab[pid];
pptr->pstate = PREADY;

insert (pid,rdyhead.pptr->pprio) ;
if (resch)

resched();

return (0K) ;

