More Process Management Chapter 5 1

5 More Process Management

Resumption, Suspension, Process Creation & Termination

e To temporarily stop a process from executing and later start it explicitly,
a new process state is introduced : suspended animation, abbreviated

to "suspended”

e This process state is, e.g., used in paging systems, to install pages

referenced in user memory.

— During this operation the process is suspended.

More Process Management Chapter 5 2

5.1 Process Suspension And Resumption

Suspend, resume, create are the operations associated with this new process

state.

e suspend : removes a process from the ready queue or stops a currently

executing process; parameter: process id.
e resume : moves a process from the suspended state to the ready list
explicitly.
— The currently executing process can suspend itself by calling
suspend(getpid()).
e create : creates a new, independent, process as if it had been suspended
during running, so ctrsw can return to it

— This mechanism is called pseudo call.

RESCHED

RESCHED

RESUME
USPENDED

CREATE

Figure 5.1: Transitions among the current, ready, and suepended states

JUOWOSRUR]A SSOD0IJ 9IOTN

¢ 1ydey)

More Process Management Chapter 5 4

5.1.1 implementation of Resume

* resume -- unsuspend a process, making it ready; return

* the priority

K
*/

SYSCALL resume(pid)
int pid;

{
char ps; /* saved processor status */
struct pentry *pptr; /* pointer to proc. tab. entryx*/
int prio; /* priority to return */
disable(ps);
if (isbadpid(pid) || (pptr = &proctab[pid]->pstate

= PRSUSP){

restore(ps) ;
return(SYSERR) ;
}
prio = pptr->pprio;
ready(pid, RESCHYES);
restore(ps) ;

return(prio) ;

More Process Management Chapter 5 5

The need for turning off when accessing the central
data structure of Xinu
e Resume calls resched, and hence changes:
— the process table (i.e., the entry for the resumed process)
— the g-structure (since within the ready list is implemented)
e When a process would be simultaneously changing the process table -
this situation is, in general, called race condition

e The final state of the process table is not clear.

Comparison:

{x= } x:=1 || x:=2 {x= 7}

e To prevent such situation from happening:
this ascertaining is prohibited by disabling interrupts while accessing
the process table (or other certain data structure of the operating

system).

More Process Management Chapter 5 6

5.2 System Calls

e The precaution resume takes, to verify that a process is legal, make it a

general purpose routine that can be invoked by (unexperienced) user.
— resume is a system call

e System calls define the exterior of the operating system by providing an

interface through which the user accesses all system services
e System calls should protect the internal system from illegal sue.
e There is one process table in the system, shared by all its processes.
e A process can be sure that other process is trying to change the process

table at the same time, so :

— It should not call resched(), because rescheduling switches control to

another process and this change the process table.

— The system should not react to interrupts, since interrupt routines

can call resched as well

More Process Management Chapter 5 7

5.2.1 Implementation of Suspend

/* suspend.c - suspend */

#include <conf.h>
#include <kernel.h>
#include <proc.h>

[km—m
* suspend -- suspend a process, placing it in hibernation
K e e
*/

SYSCALL suspend(pid)

int pid; /* id of process to suspend */
{

struct pentry *pptr;/* pointer to proc. tab. entryx*/

char pSs; /* saved processor status */

int prio; /* priority returned */

disable(ps);

if (isbadpid(pid) || pid==NULLPROC | |
((pptr= &proctab[pid])->pstate!=PRCURR &&
pptr->pstate!=PRREADY)) {
restore(ps) ;
return(SYSERR) ;

More Process Management Chapter 5

if (pptr->pstate == PRREADY) {

dequeue (pid) ;
pptr->pstate = PRSUSP;
} else {
pptr->pstate = PRSUSP;
resched() ;
+

prio = pptr->pprio;
restore(ps);

return(prio);

More Process Management Chapter 5 9

Calling resched()

This kind of call presuppose that resched is called in parallel to the

current pProcess.

Inter leaning the instructions of this concurrent (parallel) process in
between the instructions of the concurrent process, implies that, e.g., the
real-time clock procedure has interrupted the current process.

However, this is impossible when the current process is deaf to interrupts.

— the real-time clock interrupt is for then temporarily protected.

To prevent Interrupts :

— resume invokes procedure disable(ps) to set the process priority heigh

to prevent interrupts.

— to restore the situation before disable(ps) was called, one calls

restore(ps)

More Process Management Chapter 5 10

Examples (invalid, inconsistent sate):

As wee will see later, high level interrupt routines enable the occurrence of
other interrupts by calling resched(), if they need the CPU to switch

temporarily to a new context, i.e., a process with interrupt enabled.

To prevent inconsistencies, the shared data structures should be left in a valid

sate before calling any routines switches context

1. If resched() is called in between
pptr->pstate != PRCURR
pptr->pstate != PRREADY
hight result in setting
pptr->pstate = PRCURR

leaving the system in an invalid system state

2. Resched occurring in between dequeue(pid) and
pptr->pstate = PRSUSP

could result in enqueue(pid)

3. Interrupts occurring in between
pptr->pstate = PRSUSP
and resched :might result in

pptr->pstate = PRCURR

More Process Management Chapter 5 11

5.3 Process Termination

e Suspend freezes processes, but leaves them in the system so they can be

resumed later.

e System call kill stops a process immediately and removes it from the
system completely.
e See code for kill below

— First kill checks its argument, pid to ensure it corresponds to a valid

active process
— it then decrements numproc
— free stack space of this process (by calling procedure freestk)
— unlinks the process from the ready list (dequeue)
— and frees the process table entry (by assigning its state field
PRFREE).

e Since process no longer appears on ready list, it will never regain control
of CPU.

e A process can kill itself by calling kill(getpid())

— if it is the last active process the zdone() is called

e its state is made PRFREE and resched() is called - this process can not

be started again because it dose not longer appear on the ready list.

/* kill.

#include
#include
#include
#include

#include

SYSCALL

More Process Management Chapter 5 12

c - kill =/

<conf.h>
<kernel.h>
<proc.h>
<sem.h>
<mem.h>

kill(pid)
int pid; /* process to kill */

struct pentry *pptr;/* points to proc.tab. for pid */

char ps; /* saved processor status */

disable(ps);
if (isbadpid(pid) ||
(pptr= &proctab[pid]->pstate==PRFREE){
restore (ps) ;
return(SYSERR) ;
+
if (--numproc == 0)

xdone() ;

More Process Management Chapter 5 13

freestk (pptr->pbase, pprt->pstklen);
switch (pptr->pstate){

case PRCURR: pptr->pstate = PRFREE;/* suicide */
resched() ;

case PRWAIT: semph [pptr->psem] . semcnt++;

case PRSLEEP: /* fall through*/

case PRREADY: dequeue(pid);

/* fall through */
default: pptr->pstate = PRFREE;
}

restore(ps) ;
return(0K) ;

More Process Management Chapter 5 14

/* xdone.c - xdone */

* xdone -- print system completion message as last

* process exits

xdone ()

{

printf ("\n\nAll user process have completed.\n\n");

More Process Management Chapter 5 15

5.4 Kernel Declaration

The code below defines in-line procedures disable and restore used above, as
well as other variables and symbolic constants used throughout Xinu :

/* kernel.h - disable, enable, halt, restore, isodd */

/* Symbolic constants user throughout Xinu */

typedef char Bool; /* Boolean type */
#define FALSE 0 /* Boolean constants */
#define TRUE 1

#define NULL (char *)0 /*Null pointer for linked listsx*/
#define SYSCALL int /* System call declaration */
#define LOCAL struct /* Local procedure declaration */
#define INTPROC int /* Interrupt procedure */
#define PROCESS int /* Process declaration */
#define RESCHYES 1 /* tell ready to reschedule */
#define RESCHNO 0 /* tell ready not to reschedulex/
#define MININT 0100000 /* minimum integer (-32768) */
#define MAXINT 0077777 /* maximum integer */
#define SP 6 /* reg. 6 is stake pointer */
#define PC 7 /* reg. 7 is program counter */
#define PS 8 /* proc. status in 8th reg. locx/
#define MINSTK 40 /* minimum process stake size */
#define NULLSTK 300 /* process 0 stake size */

More Process Management Chapter 5 16

#define DISABLE 0340 /* PS to disable interrupts */
#define OK 1 /* returned when system call ok*/
#define SYSERR -1 /*returned when sys. call failsx/
#define INITARGC 1 /* initial process argc */
#define INITSTK 200 /* initial process stack */
#define INITPRIO 20 /* initial process priority */
#define INITNAME '"main" /* initial process name */
#define INITRET userret /* processes return address */
#define INITPS 0 /* initial process PS */
#define INITREG 0 /* initial register contents */
#define AUANTUM 10 /* clock ticks until preemption*/

/* misc. utility inline functions */

#define isodd(x) (01&(int) (x))
#define disable(ps) asm("mfps “ps");asm("mtps $0340")

#define restore(ps) asm("mtps ~“ps")/*restore inturrupt status*/

#define enable() asm("mtps $000")/* enable interrupts */
#define pause() asm("wait")/* machine "wait for interr.x*/
#define halt() asm("halt")/* machine halt instruction */

extern int rdyhead, rdytail;

extern 1int preempt;

More Process Management Chapter 5 17

5.5 Process Creation

System call create creates a new, independent process . So it

e lays down an exact image of the process as if it has been stopped while

running, so ctzsw can switches to it.
e finds a free slot in the process table
e allocates space for the process’ stake
e and fills in the process table entry.

See code below

More Process Management Chapter 5 18

/* create.c - create, newpid */

#include <conf.h>
#include <kernel.h>
#include <proc.h>
#include <mem.h>
#include <io.h>

[
* create - create a process to start running a procedure
K e e e e e e e
*/
SYSCALL create(procaddr,ssize,priority,name,nargs,args)
int *xprocaddr; /* procedure address */
int ssize; /* stack size in words * /
int priority; /* process priority > 0 */
char *name ; /* name (for debugging) */
int nargs; /* number of args that follow */
int args; /* arguments (treated like an */
/* array in the code) */
{
int pid; /* stores new process id */

struct pentry *pptr; /*pointer to proc. table entry*/
int 1;

int *a; /* points to list of args */

More Process Management Chapter 5 19

int xsaddr ; /* stack address x/
char ps; /* saved processor status */
int INITRET() ;

disable(ps);

ssize = roundew(ssize);
if (ssize < MINSTK ||
((saddr=getstk(ssize)) == SYSERR) ||
(pid=newpid()) == SYSERR || isodd(procaddr) ||
priority < 1) {
restore (ps) ;
return(SYSERR) ;
+
numproc++;
pptr = &proctab[pid];
pptr->pstate = PRSUSP;
for(i=0 ;i<PNMLEN && (pptr->pname[i]=name[i])!=0 ;i++)
pptr->pprio = priority;
pptr->pbase = (short)saddr;
pptr->pstklen = ssize;
pptr->psem = 0;
pptr->phasmsg = FALSE;
pptr->plimit = (short) ((unsigned)saddr - ssize +
sizeof (int));
*saddr-- = MAGIC;

More Process Management Chapter 5 20

pptr->pargs = nargs;
for (i=0 ; i<PNREGS ; i++)

pptr->pregs [i]=INITREG;
pptr->pregs[PC] = pptr->paddr = (short)procaddr;
pptr->pregs[PS] = INITPS;
pptr->pnxtkin = BADPID;
pptr->pdevs[0] = pptr->pdevs[1] = BADDEV;
a = (&args) + (nargs-1); /* point to last argument */

/* machine dependent; copy args*/

for (; nargs > 0 ; nargs--)

xsaddr-- = *a--;/*onto created process’ stackx/
saddr = (int)INITRET; / push on return address */
pptr->pregs[SP] = (int)saddr;
restore (ps) ;

return(pid) ;

More Process Management Chapter 5 21

[kmm
* newpid -- obtain a new (free) process id
K e
*/
SYSCALL newpid()
{
int pid; /* process id to return */
int 1;

/* check all NPROC slotsx/
for (i=0 ; i<NPROC ; i++) {
if ((pid=nextproc--) <= 0)
nextproc = NPROC-1;
if (proctabl[pid].pstate == PRFREE)
return(pid) ;
+
return(SYSERR) ;

More Process Management Chapter 5 22

#include <conf.h>
#include <kernel.h>

userret ()

{
kill(getpid());
+

More Process Management Chapter 5 23

5.6 Utility Procedures
Following codes show the implementation of the system calls: getpid, getprio
and chprio

e (fetpid allows a process to obtain its process id.

— userret shows one reason, how a procedure needs to know the process

id of the process executing it.
e (fetprio allows a process to obtain aprocess’ scheduling priotity.
e Chprio allows a process to change a process’ scheduling priority.

See the implementation below !

More Process Management Chapter 5 24

/* getprio.c - getprio */

#include <conf.h>
#include <kernel.h>

#include <proc.h>

[k
* getprio -- return the scheduling priority of a given process
K —
*/
SYSCALL getprio(pid)
int pid;

{
struct pentry x*pptr,;
char pPS;
disable(ps);

if (isbadpid(pid) ||
(pptr = &proctab[pid])->pstate == PRFREE){
restore(ps) ;
return(SYSERR) ;
+
restore (ps) ;

return (pptr->pprio);

More Process Management Chapter 5 25

/* getpid.c -- getpid */

#include <conf.h>
#include <kernel.h>
#include <proc.h>

[k —
* getpid —- get the process id of current executing process
K e e
*/

SYSCALL getpid()

{

return(currpid) ;

More Process Management Chapter 5 26
/* chprio.c - chprio */
#include <conf.h>

#include <kernel.h>
#include <proc.h>

Y T et e e e e e
* chprio -- change the scheduling priority of a process
K
*/
SYSCALL chprio(pid, newprio)
int pid;
int newprio; /* newprio > 0 */

int oldprio;
struct pentry *pptr;
char ps;

disable(ps);
if (isbadpid(pid) || newprio <= 0 ||
(pptr = &proctab[pid])->pstate == PRFREE){
restore(ps) ;
return(SYSERR) ;

More Process Management

oldprio = pptr->pprio;
pptr->pprio = newprio;
restore(ps) ;

return(oldprio) ;

Chapter 5

27

