Message Passing Chapter 7 1

8 Communication In Operating Systems

e Inter-process communication: important mechanism in operating systems
e Unix-Example : shell-pipeline : IPC between user processes

e several mechanisms
— Semaphores for coordination/synchronization ([Com83], chapter 6)

— Terminals [Hoa74][Han 75]:

* Mechanism in mutual exclusion
* high-level, programming language constuctions, some kind of
abstract data type or object

* no system call
— Data transmission by using shared variables
— message passing

*x synchronization and data transmission

Message Passing Chapter 7 2

8.1 Message Passing

e Form of inter-process Communication /process synchronization

/-coordination
e alternative : shared variables
e unlike synchronization by using semaphores : it can be asynchronous
e implementation using system calls : sendreceive

e several variants is possible
— direct message passing
— message sending and receiving can be blocking or unblocking
— rendezvous: send and receive are blocking

— Capacity of the binding (buffer size): what would happen, if buffer is
full 7

— Messages of determined or variable size
— more than one receiver is possible 7

— specified sending/receiving process

Message Passing Chapter 7 3

8.2 Message Passing In Xinu

e Tow forms of message passing
1. process-to-process (direct)

2. message left at redezvous points (chapter 14, [Com83])

e Three system calls
1. send: (asynchron)
2. receive (synchron)

3. recvclr (asynchron)

e receiving Buffer of size 1 (= one word),
1. only the first is received

2. all other are lust because sender dose not blocks
e new process state: receiving (PRREC)

e storage place: in the process table entry.

— not in the sender memory because sending process might exit before

message is received

— not in the recipient’s memory because it poses a security threat

Message Passing

/* proc.h

see P. b5 %/

struct pentry {

char

pstate;

short pmsg;

short

Chapter 7 4

/* process state */

/* 1 message sent to this process */

phasmsg; /* nonzero => msg is valid */

Message Passing Chapter 7

SEND RECEIVE

RESCHED

RESUME SUSPEND

CREATE

Figure 7.1: Process state transitionsfor the receiving state

Message Passing Chapter 7 6

8.3 Implementation Of Send

Interrupt disabled

Uses the process id to access corresponding process table entry

e Errors when
— invalid process id

— receiving buffer is full

else

1. passing the message
2. setting the flag (phasmsg)

3. if the recipient is waiting for a message, the reschedule by calling
ready()

Message Passing Chapter 7 7

Sending — send

SYSCALL send(pid, msg)
{

struct pentry *pptr;/* receiver’s proc. table addr.x*/

disable(ps);
if (isbadpid(pid)
|| ((pptr= &proctab[pid])->pstate == PRFREE)
| | pptr->phasmsg) {
restore(ps) ;
return(SYSERR) ;
+
pptr->pmsg = msg; /* deposit message */
pptr->phasmsg = TRUE;
/* if receiver waits, start it */
if (pptr->pstate == PRRECV)
ready(pid, RESCHYES);
restore(ps) ;
return(0K) ;

Message Passing Chapter 7 8

8.4 Implementation Of Receive

Asynchronous receiving — recvclr
e like the synchronous receiving
e if process has message: return
e clse return(OK)

SYSCALL recvclr()

{
char pPS;
int msg;
disable(ps);

if (proctabl[currpid] .phasmsg) {/* existing message? */
proctab[currpid] .phasmsg = FALSE;
msg = proctab[currpid] .pmsg;

} else
msg = 0K;

restore(ps) ;

return(msg) ;

Message Passing Chapter 7 9

Synchronous receiving — receive
e Like the asynchronous receiving

e deference: if process has no message: changes P to the receiving state

and calls receiving state resched.

HIER, KOMMT EINE FIGURE (COM P. 95)

Message Passing Chapter 7 10

Synchronous receiving

SYSCALL receive()

{
struct pentry x*pptr;
int msg,
char pSs;
disable(ps);

pptr = &proctabl[currpid];

if (!pptr->phasmsg) { /* if no message, wait for one */
pptr->pstate = PRRECV;
resched() ;

}

msg = pptr->pmsg; /* retrieve message */

pptr->phasmsg = FALSE;

restore(ps) ;

return(msg) ;

