Memory Management Chapter 8 1

8 Xinu Memory Managment

e The operating system keeps track of location and size of the available
free space, allocating it on demand, and recovering it when processes

complete.

e In large operating system deference from Xinu, the demand for memory
by processes may exceed the total amount of core/primary memory
available, hence the system must multiplex real memory among processes
waiting for use it.

e memory multiplexing can take form of :

— swapping or

— paging

Memory Management Chapter 8 2

swapping, paging (1)
e Swapping: entire processes are written to secondary (disk) storage when

they are using the CPU.

e Paging: each program is divided into small fixed-size pieces called pages.
The system keeps only the most recently referenced pages in primary

storage (i.e., main memory).

e Programmers don’t notice swapping and paging because the system

hides it by appropriate hardware.

Memory Management Chapter 8 3

swapping, paging (2)

In addition to pages, paged system supply each process with its own

independent address space

This virtual address space can be larger than real memory because the
paging system keeps the virtual image on disk, moving only the small

subset of referenced pages to main memory

When a process references location ¢ in its address space, the hardware
consults memory mapping tables to see whether the page with location ¢

resides in main memory or not

If not, the operating system suspends the process, loads the requested
page from secondary to primary memory, making room for it, when

needed, and when it is there, resumes execution of the process

Memory management requires hardware support. When done well

— the operating system can portion memory in such a way that
hardware prevents a process from reading or writing memory

allocated to another process

— This supply an especially important aspect for security

Memory Management Chapter 8 4

8.1 Memory Management on the 11/2

e This chapter describes procedures and data structures managing the free
memory that allocate space for stack and heap storage, and keep track of

released storage.

e Free space is treaded as an exhaustable resource hande out as long as it

is available and quests can be satisfied

e A process which can not obtain memory must decide for itself when to

try again

e Exhaustable allocation worths only processes cooperate to keep from

consuming all free memory.

Memory Management Chapter 8 5
0 _etext _edata _end
text data bss FREE SPACE
Figure 8.1: Storage layout when Xinu begins
_etext _edata _end
text data bss heap FREE SPACE stack3 stack2 stack1

Figure 8.2: Storage layout during execution

Memory Management Chapter 8 6

8.2 Low-Level Memory Management Procedure

o getstk, freestk: used by create and kill:
— create : saddr = getsth(ssize) ... pg. 75
— kill : freestk(pptr->pbase, pptr->pstklen) ... pg. 77
e getstk obtains a block of memory and returns its highest address, at
which the stack of the created process initially starts. It has tow args.:
— highest address of block being returned
— its size
e create records size and location of the allocated space in the process
table entry of a process

e fkill returns this stack space to free memory space by calling freestk .

Xinu guarantees that the stack space allocated to a process is released at
process exit.

Memory Management Chapter 8 7

Heap (de)allocation, stack (de)allocation

e For the heap no deallocation procedures are built into Xinu

- deallocation must be done on a process-by-process basic

A process must release storage that it allocates from the heap befor it exit

by itself. (This dosen’t happen automatically)
e Allocation on the heap is done by procedure getmem

e Deallocation on the heap is done by procedure freemem
— getmem. freemem reference blocks by their lowest address

— freestk is implemented using freemem

Memory Management Chapter 8 8

8.3 Location Of Allocated Storage

e Separating heap from the stack storage works best when a singe process

executes :
— if (single) stack overflow occurs, the process runs into the free space
located between stack and heap
e A problem arises when more than one process executes

— Stack overflow that causes corruption of data ... an exercise suggest a

solution.

Memory Management Chapter 8 9

8.4 Implementation Of Xinu Memory Management

/* mem.h - freestk, roundew, truncew */

* roundew, truncew - round or truncate address to
* next even word

#define roundew(x) (int *)((3 + (int) (x)) & (-3)
#define truncew(x) (int *)(((int) (x)) & (-3))

#define freestk(p, len) freemem((unsigned) (p)
- (unsigned) (roundew(len))
+ (unsigned)sizeof (int),
roundew(len))
struct mblock {
struct mblock *mnext;
unsigned int mlen;
¥
extern struct mblock memlist;/* head of free memory listx*/
extern int *maxaddr; /* max memory address */

extern int end; /* address beyond loaded memory */

Memory Management Chapter 8 10

The free memory FREEMEM is organized as follows :
— Blocks of free memory linked together on a list with global variable

MEMULIST pointing to the first free block.

Blocks on this free list are ordered by increasing addresses

While on the free list, each block contains in its first 2 words
— a pointer to the next free block
— size of the current block

Only blocks of 2 words or more can be linked into the free list, i.e., of 4

bytes or more, making the number of bytes a multiple of 4

Memory Management Chapter 8 11

8.4.1 Allocating Heap Storage

/* getmem.c - getmemx/

#include <kernel.h>
#include <conf.h>
#include <mem.h>

* getmem -- allocate heap storage, returning lowest
* integer address

K
*/
int xgetmem (nbytes)
unsigned nbytes;
{

char pSs;
struct mblock *p, *q, *leftover;

disable(ps);

if (nbytes==0 || memlist.mnext==NULL) {
restore (ps) ;
return((int *)SYSERR);

+

nbytes = (unsigned) roundew(nbytes);

for (g= &memlist,p=memlist.mnext ; p!=NULL ;

Memory Management Chapter 8 12

q=p,p=p->mnext)

if (p~>mlen == nbytes) {
g->mnext = p->mnext;
restore(ps);
return((int *)p); }

else if (p->mlen > nbytes) {
leftover = (struct mblock *)

((unsigned)p + nbytes);
g->mnext = leftover;
leftover->mnext = p->mnext;
leftover->mlen = p->mlen - nbytes;
restore(ps);
return((int *)p);

}
restore(ps);
return((int *)SYSERR);

Memory Management Chapter 8 13

e Procedure getmem(nbytes) allocates heap storage returning the lowest

integer address

e getmem search the memory list to find block of memory large enough to

contain roundew(nbytes) bytes of free storage
e Because the list of free blocks is singly linked, 2 pointers p and q, to
search it.

— When p points to a block of suitable size, q points to its predecessor
on the list.

Memory Management Chapter 8 14

8.4.2 Allocating Stack Storage

e getstk must search the entire list of free blocks because the list is kept in
ascending order by block address, and the desired block is the one with
the highest address satisfying the request.

e fits and fitsq record the values of p and q each time a block satisfies the
request.
— When search is completed: fits points to the free block that last
satisfied this request.

— fits points to its predecessor

o *getstk(nbytes) makes full use of C’s powerful for statement. See pg. 382

for its semantics

Memory Management Chapter 8 15

/* getstk.c - getstkx/

#include <conf.h>
#include <kernel.>

#include <mem.h>

* getstk -- allocate stack memory, returning address of

* topmost int

int *getstk(nbytes)
unsigned int nbytes;

char pSs;
struct mblock *p, *q; /* q follows p along memlistx*/
struct mblock *fits, *fitsq;

int len;

disable(ps);

if (nbytes == 0) {
restore(ps);

return((int *)SYSERR);
+

nbytes = (unsigned int)roundew(nbytes);

Memory Management Chapter 8 16

fits = NULL;

q = &memlist;

for (p = g->mnext ; p != NULL ; q = p, p = p->mnext)
if (p~>mlen >= nbytes){

fitsq = q;
fits = p;
+
if (fits == NULL){
restore(ps) ;
return((int *)SYSERR);
}

if (nbytes == fits->mlen) {
fitsq->mnext = fits->mnext
len = nbytes;

} else {

len = fits->mlen;

fits->mlen -= nbytes;

+

fits = ((int)fits) + len - sizeof(int);

*((int *) fits) = nbytes;

restore (ps);

return((int *)fits);

Memory Management Chapter 8 17

8.4.3 releasing Storage

e System call freemem returns a block of storage by inserting it at the
proper location in the free list and closing it with any adjacent free

blocks.

e freemem stops searching as soon as address of the block to be returned

lies between p and q.

Memory Management Chapter 8 18

SYSCALL freemem(block, size)
struct mblock *block;

unsigned size;

char pPS;
struct mblock *p, *q;

unsigned top;

if (size==0 || (unsigned)block>(unsigned)maxaddr
|| ((unsigned)block)<((unsigned)&end))
return(SYSERR) ;
size = (unsigned)roundew(size);
disable(ps);
for(p=memlist.mnext,q= &memlist ; (char *)p!=NULL &&
p<block ; g=p,p=p->mnext)
if ((top=gq->mlen+(unsigned)q)>(unsigned)block &&
q!= &memlist || (char *)p!=NULL &&
(size+(unsigned)block) > (unsigned)p) {
restore(ps);
return(SYSERR) ; }

if (q!= &memlist && top == (unsigned)block)

Memory Management Chapter 8 19

g->mlen += size;

else {
block->mlen = size;
block->mnext = p;
g->mnext = block;
q = block;

}

if ((unsigned) (g->mlen + (unsigned)q) == (unsigned)p)
gq->mlen += p->mlen;
q->mnext = p->mnext;

+

restore(ps) ;

return(0K) ;

