Interrupt Processing Chapter 9

Hier kommt eine Figure 9.1

9.1

Interrupt Processing Chapter 9 2

Dispatching Interrupts

Vectored Interrupts (1)

e The 11/2 processor uses vectored interrupts to handle exceptions and

interrupts from external devices.

e Whenever an external device needs to communicate with the processor

it places a signal on the interrupt bus line

if the processor is running with interrupts enabled:
its checks this line after every time an instruction has been executed

to see whether an interrupt needs processing

to handle the interrupt:

the processor sends an acknowledgement over the interrupt bus line

the first external device with an pending request receives the
acknowledgement and return its interrupt vector address v along the
bus

when the processor receive v:

* the processor pushes the current PC and PS on the stack
x loads the PC and PS from tow words in memory

x starts at location v see figure 9.1

* continues executing instructions at the new location.

Interrupt Processing Chapter 9

HIER KOMMT EINE FIGURE

Interrupt Processing Chapter 9 4

Vectored Interrupts (2)

Each external device is assigned an unique interrupt vector address v
before it is inserted into the bus, thus enabling the system to distinguish

among them
J.e., every device is identified by its unique interrupt vector addressv

The interrupt vector locations contain a valid PC and PS.
— This PC points to an interrupt handling routine (interrupt handler)

for the interrupting device

The processor execute the code of the interrupt routine, returning to the

place where the user’s program has interrupted
To make the interrupt transparent (i.e., invisible) to the running,
program

— the interrupt routine saves and restore the stack of the machine - the
values of R0-R6 (since HW saves R7(PC) and PS)

Interrupt Processing Chapter 9 5

Vectored Interrupts (3)

e In practise SP(=R6) needs no saving provided the interrupt routine pops
off the stack whenever it pushed the stack before returning (i.e., the

stack is restored to its original position)

e To prevent the interrupt routine from being interrupted itself by another
devices,
— the PS stored in the interrupt vector specifying a priority level of 7.
— Thus interrupt processing begins with interrupts disabled

e Interrupt processing ends by executing a return from interrupt
instruction:
— rtior rtt,
— restoring ,in a single step, the old PC and PS from the stack

— and returning the stack pointer SP to its original value

Interrupt Processing Chapter 9 6

Handling exceptions

e Exceptions are handled similarly, except that they can never be turned
off (i.e., disabled)
e Examples of exceptions occur
— when nonexistent memory is addressed
— upon an array-bound error
— execution of invalid code

— power failure

Interrupt Processing Chapter 9 7

9.2 Input And Output Interrupt Dispatchers

e Devices connect to computer system through hardware mechanisms
called controllers

e Controllers reside on boards plugged into the system bus; their
hardware converts digital data to wave forms and signals controlling
peripheral devices s.a. terminals and disks

e Xinu allows both input and output operations to the console device
— with output to console displayed on screen
— input from console read from keyboard

e input interrupts for characters typed on a terminal’s keyboard trap t a

different vector from output interrupts (for chars. sent to the display)

e See figure 9.1

Interrupt Processing Chapter 9

HIER KOMMT EINE FUGURE (9.7)

Interrupt Processing Chapter 9 9

When interrupts occurs
old PC and PS stacked
new PC and PS loaded from interrupt vector
new PC points to interrupt dispatch routine

The interrupt dispatch routine :

— Saves copy of PS (because condition codes change lower-order bits of
register)

— masks off low-order 4 bits to compute an index into a global interrupt
dispatch table witch contains the addresses of the hight-level

interrupt handlers for each connected device
— See the code for intmap on later slide.

— 1/0O interrupts routines receive an argument, identifying the

interrupting device

— I/0 interrupt routines defined in intmap are getchar(), putchar(ch)
fgetchar(), fputchar(ch).

— 1/0O interrupt dispatchers contains in file ioint.s

Interrupt Processing

HIER KOMMT EINE FUGRE (9.9)

Chapter 9

10

Interrupt Processing Chapter 9

After returning from interrupt routine
HIER KOMMT EINE FUGURE (9.10)

11

Interrupt Processing Chapter 9 12

/* io.h - fgetc, fputc, getchar, isbaddev, putchar */

#define INTVECI inint /* input interrupt dispatch routine */
#define INTVECO outint /* output interrupt dispatch routine */
extern int INTVECI() ;
extern int INTVECO() ;

struct intmap { /* device-to-interrupt routine mapping */
/* address of input interrupt to input routinex*/

int (x¥iin) O);

int icode; /* argument passed to input routine */
/* address of output interrupt routine */

int (*iout) () ;

int code; /* arguments passed to output routine */

s

#define NDEVS

extern struct intmap intmap[NDEVS];

#define isbaddev(f) ((£)<0 || (£)>=NDEVS)
#endif

/* In-lines I/0 procedures */
#define getchar() getc (CONSOLE)

#define putchar() putc (CONSOLE, (ch))
#define fgetc(unit) getc((unit))

Interrupt Processing Chapter 9 13

#define fputc(unit,ch) putc((unit), (ch))

struct vector {

char *vproc; /* address of interrupt procedure */

int Vps; /* saved process status word */

};

/* ioint.s - inint, outint */

Interrupt Processing

Chapter 9 14

/* I/P interrupts trap here. Original PC and PS are on top

/* of the stack upon entry. Low order 4 bits of the current

/* PS contain the device decriptor, Inerrupts are disabled */

.globl

_outint:

mov

_inint:

ioint:

mfps

mov

_inint, _outint,_intmap

-(sp)
r0,-(sp)

$_intmap+4,r0

br

mfps
mov

mov

mov
mov
bic
ash
add

mov

ioint

-(sp)
r0,-(sp)
$_intmap,r0

rl,-(sp)
4(sp),rl
$177760,r1
$3,r1
rl,r0

2(r0) ,-(sp)

/ Output interrupt entry point

/ Save device descriptor from PS
/ Save rO (csv does not)
/

point rO to output in intmap

~

Go do common part of code
Input interrupt entry point

/
/ Save device code from PS
/ Save r0 (csv does not)

/

Point rO to input in intmap

Code common to input & output
Save r1 (csv does not)

Get saved PS in ril

Mask off device descriptor

/ pick correct entry in intmap
/ Form pointer to intmap entry
/ Push pointer to intmap entry

Interrupt Processing

jsr
mov
mov
add
rtt

pc,*(r0)
2(sp),rl
4(sp) ,x0
$8,sp

Chapter 9 15

/ Call interrupt routine

/ Restore rl1 and RO from stack

/ Pop arg, saved r0, rl and PS

/ Return from interrupt

Interrupt Processing Chapter 9 16

9.3 The Rules for Interrupt Processing

1. Interrupt routines examine and modify global data structure s.a I/O

buffers, so interference from over processes must be prevented.

This is ess. done in tow ways :

e disabling interrupts, with interrupts still disabled after interrupt

routine returns; so only after toint returns interrupts enabled again

e disabling interrupts, but: high level interrupt routines may enable

interrupts by calling resched.

In case CPU switches to a process with interrupt enabled ! (send

called, starting the receiver waiting for a message, or signal making

first process on waiting queue ready to run)

— interrupt routines should leave global data in a valid state before
calling resched()

— No process enables interrupts unless it previously disabled them

Interrupt Processing Chapter 9 17

2. Interrupts should not be disabled too long.
If thy do, devices will fail to perform correctly, e.g., when processor does
not accept character from an I/O device before the next one arrives,
data will be lost

Interrupt routines must be designed to enable further interrupts as

quickly as possible

3. Interrupt code is executed by whatever process is running when the
interrupt occurs.

This is especially the NULL process.

Recall that resched() requires that there’s at least one process ready to

run, so the NULL process must always be current or ready

Interrupt routines can only call procedures that leave the executing

process in the current or ready states.

