
Abschnitt I

Asynchronous System Model

Inhalt: I/O automata · traces and executions · operations on automata: compo-
sition + hiding · fairness · properties and proof methods · safety and liveness

Literatur: The material is taken from [Lyn96, Chapter 8].



1 Asynchronous System Model

Overview

• big step: from synchronous to asynchronous1 model

• more complex

– more “nondeterminism”
– more uncertainty, due to the relative speed of the parallel components
– fairness, liveness

• machine model:

I/O automata

1the word “asynchronous” is used differently sometimes elsewhere. Asynchronous communication/message passing is
often meant as buffered communication.

2



1 Asynchronous System Model

I/O automaton

• simple machine/automaton model for processes in an asynchronous distributed
network

• named “actions” for the transitions (internal or external = input or output)

• ⇒ notion of interface/signature

• composable

• general/unspecific enough for

– shared memory concurrent systems (cf. Chapter 9 and following)
– message passing (“network”) systems (cf. Chapter 14 and following)

• Examples:

3



1 Asynchronous System Model

1. process Pi of Figure 8.1
2. fifo channel Ci,j of Figure 8.22

2One sees that the model is so unspecific, that channels are not built in, but have to be programmed.

4



1 Asynchronous System Model

Actions and signature

• actions = will be “labels” on transition

• signature S = (in(S), out(S), int(S)): three disjoint set of actions:

1. int(S): internal
2. out(S): output
3. in(S): input

• furthermore

– external actions: ext(S) , in(S) ∪̇ out(S)
– locally controlled actions local(S) , int(S) ∪̇ out(S).
– thus: external signature/interface extsig(S) = (in(S), out(S), ∅)
– A closed if in(A) = ∅ (“autonomous”)

5



1 Asynchronous System Model

I/O automaton: Definition

Definition 1. An I/O automaton A is given by

1. sig(A), a signature

2. states(A) (finite or countably infinite)

3. start(A): subset of initial states

4. trans(A) ⊆ states(A) × acts(sig(A)) × states(A): state-transition relation,
input-enabled

5. tasks(A): task-partition = equivalence-relation on local(sig(A)), at most coun-
tably infinite equivalence classes

6



1 Asynchronous System Model

Enabledness, tasks

• transition/step: (s, π, s′) ∈ trans(A)3 (input/output/internal . . . transitions)

• action π enabled in s, if s
π
→ s′ ∈ trans(A).

• input-enabledness: every input action must be enabled in every state

– it’s better to consider all possible reaction, otherwise: error prone design
– nicer theory

• quiescent state: no actions except input actions are enabled4

• tasks

– abstract represention for “tasks/jobs/threads of control”
– useful specifically for “parallel composition”
– primarily used later to specify fairness conditions to ensure liveness properties
– word “task” =̂ task-partition class of the automaton

3I sometimes write also s
π
→A s′, or s

π
→ s′, if A is clear from the context.

4Cf. the definition of quiescent state for the synchronous model [Lyn96, p. 19].

7



1 Asynchronous System Model

Examples: channel and process

• cf. Examples 8.1.1 and 8.1.2 in [Lyn96, p. 204]

• written in precondition/effect-style, grouping together “analogous” actions (pa-
rameter)

• note:

– input enabledness: empty precondition = true
– tasks:
∗ for the process: separation per receiver channel
∗ for the channel: all outputs5 in the same class

5i.e., all locally controlled actios in this example.

8



1 Asynchronous System Model

Executions and traces

• straightforward step semantics

– starting from an initial state: do transitions
– non-deterministic6

– we distinguish between
∗ internal steps observable: executions
∗ only actions of external steps observable: traces = interface behavior

Definition 2. [Traces and executions] Given A

1. an execution fragment of A is

(a) finite sequence s0π1s1π2 . . . πrsr

(b) or infinite sequence s0π1s1π2 . . . ,

such that si

πi+1
→ si+1. Note: in the finite case we end in a state.

6because the transitions allow this. Parallel composition will add another source of non-determinism.

9



1 Asynchronous System Model

execution = execution fragment starting with an initial state

2. traces:

(a) the trace of an execution (fragment) α of A: subsequence of α consisting of
the external actions7

(b) of an automaton A: lifted on the set A’s executions

• notation for executions and traces: execs(A), trace(α), traces(A).

• a state s is reachable, if there exists a (finite) execution with s and end-state

• concatenation: α ·α′ = “glueing” together (finite) execution fragments8

• Example 8.1.3 about the Fifo-channel Ci,j

7no states!
8Assuming, that the end state of α equals the first state of α′ and of course, not mention the glue state twice in

α ·α′, . . . .

10



1 Asynchronous System Model

Composition

• parallel composition of larger/more complex system by smaller ones

• hierarchical description

• standard product construction:

– states are paired
– transitions (“interleaving”)
∗ synchronizing on common actions
∗ non-synchronizing on local actions: automaton does nothing9

• to obtain the desired intuition: certain restrictions

– internal actions should not synchronize: internal actions disjoint10

9In other models, one could call this stuttering steps.
10That’s one possible way to formalize the informal, intuitive intention that some actions are considered to be internal.

11



1 Asynchronous System Model

– only one process controls other actions:11 output actions disjoint12

– only a finite number of synchronizing, common actions
⇒ definition of compatible signatures and automata

11By synchronizing over output actions. It’s one of the underlying intuitions in this model: input forces the component
to do someting and especially the component cannot refuse to accept input, but the internal actions and the output

actions are under component control.
12Note that input actions are not required to be disjoint: an “outputter” can trigger many “inputters”. This form of

multi-synchronization is allowed.

12



1 Asynchronous System Model

Compatible

a countable collection {Si}i∈I is compatible:

locality int(Si) ∩ acts(Sj) = ∅

indepedent outputs out(Si) ∩ out(Sj) = ∅

finite sync. no action is contained in infinitely many acts(Si)

• note: local(Si) ∩ local(Sj) = ∅

• compatible collection of automata: correspondingly

⇒ composition of sig’s and automata

13



1 Asynchronous System Model

Composition: signatures

signatures: given a compatible, countable collection {Si}i∈I of signatures

⇒
S =

∏
i∈ISi

given by

• out(S) ,
⋃̇

i∈Iout(Si)

• int(S) ,
⋃̇

i∈Iint(Si)

• in(S) ,
⋃

i∈I in(Si) −
⋃̇

i∈Iout(Si)

14



1 Asynchronous System Model

Composition: automata

automata : given a compatible, countable collection {Ai}i∈I of automata

⇒
A =

∏
i∈I Ai

given by

• sig(A) ,
∏

i∈I sig(Ai)

• states(A) ,
∏

i∈I states(Ai)

• start(A) ,
∏

i∈I start(Ai)

• s
π
→ s′ ∈ trans(A) if, for all i

– if π ∈ acts(Ai): si
π
→i s′i

– if π /∈ acts(Ai): si = s′i
• tasks(A) ,

⋃
i∈I tasks(Ai).

15



1 Asynchronous System Model

Composition: remarks

• remember: Ai’s are input enabled ⇒ A is, too

• note: local actions cannot be used to synchronize (= more than one process
makes a real step) by convention

• for finite/binary composition: A × B, or A1 × . . . × An

• it’s to prove, that
∏

i∈I Ai yields an automaton, same for signatures

• note: composing output and input actions —both are external— yields: an
output13 ⇒ broadcast communication can directly be modelled.

• × is associative14

13Other known models make a different plausible choice here: input parallel with an output gives an internal action.
14Technical remark: associativity hinges, in this formalization of parallel composition on the fact: output + input gives

output, not an internal action. This, on the other hand, does not mean to say, that binary associative synchronization

is impossible. One would have to give up to force synchronization on common actions in parallel actions. Such a
communication model is, for instance, used in CCS, and similar calculi.

16



1 Asynchronous System Model

Composition: example

• paralell composition of processes + buffers: 8.2.1

17



1 Asynchronous System Model

Local and global executions/traces

• relating executions of a composed automaton ↔ executions of the components

• given α = s0π1s1 . . . of A: “projection” α ↓Ai
= subsequence obtained by

1. deleting all pairs πrsr where πr not an A-action
2. replace each remaining sr by the i-th component si

• projection is analogously used on traces or arbitrary sequences of actions

Theorem 1. [Decomposition (8.1)] Given A =
∏

i∈I Ai.

• α ∈ execs(A), then α ↓Ai
∈ execs(Ai)

• α ∈ traces(A), then α ↓Ai
∈ traces(Ai)

Theorem 2. [Composition from executions (8.2)] Given

18



1 Asynchronous System Model

• A =
∏

i∈I Ai

• αi: an execution of Ai

• β: a sequence of actions in ext(A) s.t. β ↓Ai
= trace(αi)

Then there is an execution α of A such that β = trace(α) and αi = α ↓Ai

Theorem 3. [Composition from traces (8.3)] Given

• A =
∏

i∈I Ai

• β a sequence of actions in ext(A)

• β ↓Ai
∈ traces(Ai)

Then

β ∈ traces(A).

19



1 Asynchronous System Model

Hiding

• operation on an I/O-automaton: hiding output

• after hiding: operation is internal ⇒ no further synchronization possible

for signatures: given S and Φ ⊆ out(S) ⇒ hideΦ(S) = S′ defined as

• int(S′) , int(S) ∪ Φ
• in(S′) , in(S)
• out(S′) , out(S) − Φ

note: Φ ∩ in(S′) = ∅ by definition

for automata: simply using the definition for signatures, i.e., given A and Φ ⊆
out(A):

• hideΦ(A) defined as A′ given by replacing sig(A) by hideφ(A)

20



1 Asynchronous System Model

Fairness: informal

• asynchronous model: fairness becomes quite an issue

• informally: fair = “each one get’s his turn” (here based on tasks)

• formally: abstract (and often difficult) notion, considering infinite behavior

• various “flavors” of fairness useful

• abstraction of a scheduler

• here: each task gets infinitely many opportunities to perform one of its actions

21



1 Asynchronous System Model

Fairness

Definition 3. [Fairness] An execution fragment α of A is fair, if for each equiva-
lence class C of tasks(A):

1. if α is finite, then C is not enabled in the final state of α

2. if α is infinite, then α contains

(a) infinitely many events from C, or
(b) infinitely many occurences of states in which C is disabled

• event = occurrence of an action in a sequence (execution, trace)

• fairexecs(A): fair executions of A, and fairtraces(A): fair traces of A, where a
fair trace is a trace of a fair executions15

15Remember: trace cf. slide 9.

22



1 Asynchronous System Model

• example 8.3.1

• example 8.3.2: discrete clock

23



1 Asynchronous System Model

(De-)composition of fair traces

Analogous to the corresponding properties for general traces/executions

Theorem 4. [Fair decomposition (8.4)] Given A =
∏

i∈I Ai.

• α ∈ fairexecs(A), then α ↓Ai
∈ fairexecs(Ai)

• α ∈ fairtraces(A), then α ↓Ai
∈ fairtraces(Ai)

Theorem 5. [Composition from fair executions (8.5)] Given

• A =
∏

i∈I Ai

• αi: a fair execution of Ai

• β: a sequence of actions in ext(A) s.t. β ↓Ai
= trace(αi)

24



1 Asynchronous System Model

Then there is a fair execution α of A such that β = trace(α) and αi = α ↓Ai

Theorem 6. [Composition from fair traces (8.6)] Given

• A =
∏

i∈I Ai

• β a sequence of actions in ext(A)

• β ↓Ai
∈ fairtraces(Ai)

Then

β ∈ fairtraces(A).

25



1 Asynchronous System Model

Fairness example

• Example 8.3.3: 3 processes

– every sent message is eventually received
– if there is at least one init-event for each i, each processes sends infinitely

many messages to each other, and each process send infinitely many decide
messages

26



1 Asynchronous System Model

Fairness and finite prefix

“(Un-)fairness does not show up on finite prefixes of executions”

• fairness is not a safety property

• more formally: every finite executions can be extended into a fair execution (same
for traces)

Theorem 7. [Fairness] 1. If α is a finite execution of A, then there is a fair
execution of A that starts with α.

2. The same holds analogously for traces.

3. If α is a finite execution of A and β is any (finite or infinite) sequence if input
actions of A, then there is a fair execution α ·α′ of A such that the sequence of
input actions in α′ is exactly β.

27



1 Asynchronous System Model

4. similar for traces: If β is a finite trace of A and β′ is any (finite or infinite)
sequence if input actions of A, then there is a fair execution α ·α′ of A such that
trace(α) = β and s.t. the sequence of input actions in α′ is exactly β′.

28



1 Asynchronous System Model

Input and output

• to apply this general model: make some conventions about I/O

• remember: in the synchronous model: designated state variables (write-once for
outputs)

• in the asynchronous model: we simply use input and output actions

29



1 Asynchronous System Model

Invariant assertions

• most basic/simple class of properties: invariant assertion or invariant

“something which always holds”

• invariant of an automaton A: property which holds for all reachable states

• typically proven by induction on the number of steps16

16In the synchronous setting, we used induction on the number of rounds.

30



1 Asynchronous System Model

Trace properties and satisfaction

• remember: trace = “visible/observable” actions of an execution

⇒ often, properties of “external” interest are formulated over (fair) traces, i.e.,
extensionally by a set of traces,

Trace property P given by

1. sig(P ), signature, containing no internal action17

2. traces(P ) ⊆ acts(sig(P ))

• (at least) 2 interpretations of A satisfies P (“A |= P”)

1. extsig(A) = sig(P ) and traces(A) ⊆ traces(P )
2. extsig(A) = sig(P ) and fairtraces(A) ⊆ traces(P )

17One cannot “look inside”

31



1 Asynchronous System Model

Safety

• important class of trace properties18

• general slogan

“never something bad happens”

Definition 4. [Safety trace property] A trace property P is a safety (trace)
property:

1. traces(P ) is not empty

2. traces(P ) is prefix closed19

18In this setting, safety is phrased in terms of trace properties.
19That implies the first point already.

32



1 Asynchronous System Model

3. traces(P ) is limit closed

Definition 5. [Limit closure] An set of traces T is limit closed: if β1, β2, . . . is
an infinite sequence of finite traces in T , such than for all i:

βi is a prefix of βi+i ,

then the limit β (the unique sequence β that is the limit of βi under the sucessive
extension ordering) is also in T .

• intuition: if something bad happens, it happens in a finite amount of time by a
particular event ⇒ limit closure

• note: a fairness property is not a safety property

Example 1. [8.5.2] “No decide happens without a preceding init”.

Lemma 1. If P is a safety property, then the following statements are equivalent

1. traces(A) ⊆ traces(P ).

33



1 Asynchronous System Model

2. fairtraces(A) ⊆ traces(P ).

3. finitetraces(A) ⊆ traces(P ).

34



1 Asynchronous System Model

Liveness

• general slogan:

“something good will (indeed) happen”

Definition 6. [Liveness] A trace property P is a (trace) liveness property, if every
finite sequence over acts(P ) has some extension in P .

Example 2. [8.5.3] For every init” event, there will be a/infinite many matching
decide later.

35



1 Asynchronous System Model

Proving liveness/temporal logic(s)

• proving a liveness property:20 fairtraces(P ) ⊆ traces(P ) = liveness property

• temporal logic:

– logic(s) targeted towards reasoning about reactive behavior/traces/ . . .
– “temporal” does not (necessarily) mean real time: but ordering of events
– typical operators: “Always”, “Eventually” (sometimes written �, ♦, © . . . )

• “do-it-yourself-method”: progress functions21

– proving that a particular event will happen
– mapping from states of the automaton tp well-founded set
– show that actions decrease the value

20Often, fairness assumptions needed to prove liveness.
21one can use temp. logic to formalize this method. Anyway, we won’t use temporal logic.

36



1 Asynchronous System Model

Safety and liveness

• safety and liveness: intuitive dual classes of properties

• this can be made formal/proven (in the following)

• note: the properties are phrased for traces, analogous properties holds for
executions

Theorem 8. [Safe and live (8.8)] P is a safety and a liveness property ⇒

P = acts(P )

Theorem 9. [Safety and liveness decomposition] Given trace property P with
traces(P ) 6= ∅. Then there exist a safety and a liveness property S and L:

1. sig(S) = sig(L) = sig(P ).

2. traces(P ) = traces(S) ∩ traces(L).

37



1 Asynchronous System Model

Compositional reasoning

• “divide-and-conquer” approach sometimes helpful in reasoning

• given22 A =
∏

i∈I Ai and P =
∏

i∈I Pi, and local satisfaction: Ai |= Pi

Theorem 10. [Compositional reasoning] 1. If extsig(Ai) = sig(Pi) and
traces(Ai) ⊆ traces(Pi), then and extsig(A) = extsig(P ) and traces(A) ⊆
traces(P ).

2. If extsig(Ai) = sig(Pi) and traces(Ai) ⊆ fairtraces(Pi), then and extsig(A) =
extsig(P ) and traces(A) ⊆ fairtraces(P ).

22Unless stated otherwise: by writing the products
∏

i∈I Ai and
∏

i∈I Pi, we implicitly assert that those are well
defined, especially that the constituents form a compatible collection of automata resp. trace properties.

38



1 Asynchronous System Model

extsig(Ai) = sig(Pi) traces(Ai) ⊆ traces(Pi)
Comp-Tr

traces(A) ⊆ traces(P )

extsig(Ai) = sig(Pi) fairtraces(Ai) ⊆ traces(Pi)
Comp-FTr

fairtraces(A) ⊆ traces(P )

39



1 Asynchronous System Model

Further compositional reasoning

• using composition Theorem 3 on page 19 (or the corresponding one for fair
traces)

– “inverting” the previous reasoning
– drawing conclusion from projections to the common trace.

• compositional proof of safety properties

40



1 Asynchronous System Model

Compositional reasoning for safety properties

• exploiting that safety is violated in a finite prefix

• A preserves P : A is not the first to violate P

• if no Ai is the first violator, safety holds

Definition 7. [Preserving] P a safety property with acts(P ) ∩ int(A) = ∅ and
in(P ) ∩ out(A) = ∅.

A preserves B, if for every finite sequence β of actions that does not include internal
actions of A, and every π ∈ out(A):

If β ↓acts(P )∈ traces(P ) and βπ ↓A∈ traces(A), then
importantβπ ↓acts(P )∈ traces(P ).

The internal actions are not mentioned, of course.

41



1 Asynchronous System Model

Compositional reasoning & safety

Theorem 11. [Safety and comp. reasoning] Given A
∏

i∈I Ai. and a safety
property with acts(P ) ∩ int(A) = ∅ and in(P ) ∩ out(A) = ∅:

1. If Ai preserves P for all i, then A preserves P

2. If A is closed, A preserves P , and acts(P ) ⊆ ext(A), then

traces(A) ↓acts(P )⊆ traces(P ) .

3. If A is closed, A preserves P , and acts(P ) = ext(A), then

traces(A) ⊆ traces(P ) .

42



1 Asynchronous System Model

Hierarchical proofs

• hierarchy: different level of abstraction

• from top to bottom:23 successive refinements

• examples: simulation proofs in the material of the synchronous model

• problem: the two systems under comparison are not a strictly coupled as before

• needed: generalization of the simulation method to the asynchronous setting

• anyway: general approach: directed relationship:24

“for any execution of the lower-level automaton, there is a “corresponding”
execution of the higher-level automaton.”

23“Higher” means: more abstract, less details etc. One could for instance intruduce more parallelism going top-down.
24In the synchronous setting, the goal was that the implementation had the same behavior than the abstract system.,

at least under the assumption of determinism.

43



1 Asynchronous System Model

Simulation relation

Definition 8. [Simulation relation] • A and B with identical external interfaces.

• f ⊆ states(A) × states(B).

Then f is a simulation relation from A to B, if

Start condition: if s ∈ start(A), then f(s) ∩ start(B) 6= ∅

Step condition: • if s is a reachable state of A, and if u ∈ f(s) where u is a
reachable state of B:

• s
π
→ s′, then there is an execution fragment α of B, starting in u and ending

with some u′ ∈ f(s′) such that

trace(α) = trace(π)

44



1 Asynchronous System Model

Simulation proof method

• important proof technique, e.g., for trace

• aux. definition: B simulates A (B � A), if there exists a simulation relation from
A to B.

alternative words: A is simulated by B (A � B)

• Caveat: some people use the words “the other way around”

Theorem 12. [Simulation and trace inclusion] If there is a simulation relation
from A to B, the the traces of A are included in the traces of B:

A � B
Sim

traces(A) ⊆ traces(B)

45



1 Asynchronous System Model

Simulation and safety property

• simulation: preservation of safety properties25

P is a safety property B � A A |= P

B |= P

• for liveness properties:

– not that simple/direct

25Remember: A |= P means traces(A) ⊆ traces(P ).

46



1 Asynchronous System Model

Simulation and liveness properties

• we need to strengthen the coupling

Definition 9. [Correspondance] Given:

• A and B with identical input and output actions

• α and β executions of A resp. B

• relation f ⊆ states(A) × states(B).

Then α and β correspond wrt. f (written α onf β), if

1. there exists a mapping g from indices (occurrences) of states in α to indices of
states in β,

• g is monotone nondecreasing

47



1 Asynchronous System Model

• g exhausts all of β26

• g-corresponding pairs of states are related by f
• between successive g-corresponding pairs of states, the traces in α and β are

identical

Theorem 13. [Simulation with correspondence] If there is a simulation relation
f from A to B27, then for every execution α of A, there exists execution β of B
such that α onf β.

26I.e., the suprenum of the range of g is the supremum of the indices of states in β.
27I.e., A � B

48



1 Asynchronous System Model

Complexity measures

• upper time bound for any subset of equivalence classes in tasks(A) (thus also for
any task, a “full” equivalence class) ⇒

• upperC ∈ R
>0 + ∞

• given a fair execution α of A ⇒ associate a real-value time with each event of α.

1. times are monontone non-decreasing in α
2. if α is infinite, then the times approach ∞28

3. from any point in α, a task C can be enabled for time at most upperC, before
some action in C must occur

• timed execution = fair execution with times associated as described

• note: for a given set of bounds in upperC: many ways of associating times to
the events of α

28sometime called non Zeno-ness.

49



1 Asynchronous System Model

• time until some designated event π in α occurs: supremum of times assignable
to π in all such timed executions

• time between two events: likewise by the supremum of differences

• example 8.6.1

50



1 Asynchronous System Model

Indistinguishable executions

• indistinguishable = from the perspective of a subcomponent ⇒ projection

Definition 10. [Indistinguishable] Given: α, α′: executions of two composed
systsm each containing automaton A. Then:

α and α′ are indistinguishable to A, if their projections onto A are identical:

α ∼A α′ , α ↓A= α′ ↓A

51



1 Asynchronous System Model

Randomization

• remember: transition relation in the asynchronous model: nondeterministic29

• sometimes: “weighted” nondeterminism is useful ⇒ randomization/probabilistic
I/O automata

Definition 11. [Probabilistic I/O automaton] A probabilistic I/O automaton is
defined the same way as an ordinary I/O automaton (cf. Definition 1 on page 6),
except that the successor states are given by a probability distribution

(s, π, P ) ,

where P is a probability distribution over some subset of the states.

• semantics/execution: series of 2 non-deterministic choices!
29In the synchronous (network) model, we had some next-state function.

52



1 Asynchronous System Model

1. choose the next transition s
π
→ P

2. choose the state according to the distribution

• restriction: choice of the transition should be fair

• “inside” each probablistic automaton, there is a nondeterministic one, forgetting
the distribution (N (A))30

30sucessor states with probability 0 are not represented in the non-deterministic choice.

53



1 Asynchronous System Model

Literatur

[Lyn96] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.

54


