Abschnitt I

Asynchronous System Model

Inhalt: I/O automata \cdot traces and executions \cdot operations on automata: composition + hiding \cdot fairness \cdot properties and proof methods \cdot safety and liveness

Literatur: The material is taken from [Lyn96, Chapter 8].

- big step: from synchronous to asynchronous¹ model
- more complex
 - more "nondeterminism"
 - more uncertainty, due to the relative speed of the parallel components
 - fairness, liveness
- machine model:

¹the word "asynchronous" is used differently sometimes elsewhere. *Asynchronous* communication/message passing is often meant as *buffered* communication.

Model

I/O automaton

- simple machine/automaton model for processes in an asynchronous distributed network
- named "actions" for the transitions (internal or external = input or output)
- \Rightarrow notion of interface/signature
- composable
- general/unspecific enough for
 - shared memory concurrent systems (cf. Chapter 9 and following)
 - message passing ("network") systems (cf. Chapter 14 and following)
- Examples:

- 1. process P_i of Figure 8.1
- 2. fifo channel $C_{i,j}$ of Figure 8.2²

 $^{^{2}}$ One sees that the model is so unspecific, that channels are not built in, but have to be programmed.

Actions and signature

- actions = will be "labels" on transition
- signature S = (in(S), out(S), int(S)): three disjoint set of actions:
 - 1. int(S): internal
 - 2. out(S): output
 - 3. in(S): input
- furthermore
 - external actions: $ext(S) \triangleq in(S) \cup out(S)$
 - locally controlled actions $local(S) \triangleq int(S) \cup out(S)$.
 - thus: external signature/interface $extsig(S) = (in(S), out(S), \emptyset)$
 - A closed if $in(A) = \emptyset$ ("autonomous")

I/O automaton: Definition

Definition 1. An I/O automaton A is given by

- 1. sig(A), a signature
- 2. states(A) (finite or countably infinite)
- 3. start(A): subset of initial states
- 4. $trans(A) \subseteq states(A) \times acts(sig(A)) \times states(A)$: state-transition relation, input-enabled
- 5. tasks(A): task-partition = equivalence-relation on <math>local(sig(A)), at most countably infinite equivalence classes

Model

Enabledness, tasks

- transition/step: $(s, \pi, s') \in trans(A)^3$ (input/output/internal ... transitions)
- action π enabled in s, if $s \xrightarrow{\pi} s' \in trans(A)$.
- input-enabledness: every input action must be enabled in every state
 - it's better to consider all possible reaction, otherwise: error prone design
 - nicer theory
- quiescent state: no actions except input actions are enabled⁴

• tasks

- abstract represention for "tasks/jobs/threads of control"
- useful specifically for "parallel composition"
- primarily used later to specify fairness conditions to ensure liveness properties
- word "task" $\mathrel{\hat{=}}$ task-partition class of the automaton

³I sometimes write also $s \xrightarrow{\pi}_A s'$, or $s \xrightarrow{\pi} s'$, if A is clear from the context.

⁴Cf. the definition of quiescent state for the synchronous model [Lyn96, p. 19].

Examples: channel and process

- cf. Examples 8.1.1 and 8.1.2 in [Lyn96, p. 204]
- written in precondition/effect-style, grouping together "analogous" actions (parameter)
- note:

1

- input enabledness: empty precondition = true
- *tasks*:
 - \ast for the process: separation per receiver channel
 - * for the channel: all outputs⁵ in the same class

⁵i.e., all locally controlled actios in this example.

Executions and traces

- straightforward step semantics
 - starting from an initial state: do transitions
 - non-deterministic⁶

1

- we distinguish between
 - * internal steps observable: executions
 - * only actions of external steps observable: traces = interface behavior

Definition 2. [Traces and executions] Given A

1. an execution fragment of A is

(a) finite sequence $s_0\pi_1s_1\pi_2...\pi_rs_r$ (b) or infinite sequence $s_0\pi_1s_1\pi_2...$,

such that $s_i \stackrel{\pi_{i+1}}{\to} s_{i+1}$. Note: in the finite case we end in a state.

⁶because the transitions allow this. Parallel composition will add another source of non-determinism.

execution = execution fragment starting with an initial state

2. traces:

- (a) the trace of an execution (fragment) α of A: subsequence of α consisting of the external actions⁷
- (b) of an automaton A: lifted on the set A's executions
- notation for executions and traces: execs(A), $trace(\alpha)$, traces(A).
- a state s is reachable, if there exists a (finite) execution with s and end-state
- concatenation: $\alpha \cdot \alpha' =$ "glueing" together (finite) execution fragments⁸
- Example 8.1.3 about the Fifo-channel $C_{i,j}$

[']no states!

⁸Assuming, that the end state of α equals the first state of α' and of course, not mention the glue state twice in $\alpha \cdot \alpha', \ldots$.

Composition

- parallel composition of larger/more complex system by smaller ones
- hierarchical description
- standard product construction:
 - states are paired
 - transitions ("interleaving")
 - * synchronizing on common actions
 - * non-synchronizing on local actions: automaton does nothing⁹
- to obtain the desired intuition: certain restrictions
 - internal actions should not synchronize: internal actions disjoint¹⁰

⁹In other models, one could call this *stuttering* steps.

¹⁰That's one possible way to formalize the informal, intuitive intention that some actions are considered to be internal.

1

- only one process controls other actions:¹¹ output actions disjoint¹²
- only a *finite* number of synchronizing, common actions
- \Rightarrow definition of compatible signatures and automata

¹¹By synchronizing over output actions. It's one of the underlying intuitions in this model: input forces the component to do someting and especially the component cannot *refuse* to accept input, but the internal actions and the output actions are under *component control*.

¹²Note that input actions are not required to be disjoint: an "outputter" can trigger many "inputters". This form of multi-synchronization is allowed.

Compatible

a countable collection $\{S_i\}_{i \in I}$ is compatible:

locality $int(S_i) \cap acts(S_j) = \emptyset$

independent outputs $out(S_i) \cap out(S_j) = \emptyset$

finite sync. no action is contained in infinitely many $acts(S_i)$

- note: $local(S_i) \cap local(S_j) = \emptyset$
- compatible collection of automata: correspondingly
- \Rightarrow composition of sig's and automata

signatures: given a compatible, countable collection $\{S_i\}_{i \in I}$ of signatures

$$\Rightarrow \qquad S = \prod_{i \in I} S_i$$
 given by

•
$$out(S) \triangleq \dot{\bigcup}_{i \in I} out(S_i)$$

•
$$int(S) \triangleq \bigcup_{i \in I} int(S_i)$$

•
$$in(S) \triangleq \bigcup_{i \in I} in(S_i) - \dot{\bigcup}_{i \in I} out(S_i)$$

Composition: automata

automata : given a compatible, countable collection $\{A_i\}_{i \in I}$ of automata

$$\Rightarrow \boxed{A = \prod_{i \in I} A_i}$$
 given by

Composition: remarks

- remember: A_i 's are input enabled $\Rightarrow A$ is, too
- note: local actions cannot be used to synchronize (= more than one process makes a real step) by convention
- for finite/binary composition: $A \times B$, or $A_1 \times \ldots \times A_n$
- it's to prove, that $\prod_{i \in I} A_i$ yields an automaton, same for signatures
- note: composing output and input actions —both are external— yields: an output¹³ ⇒ broadcast communication can directly be modelled.

• \times is associative¹⁴

1

¹³Other known models make a different plausible choice here: input parallel with an output gives an internal action.

¹⁴Technical remark: associativity hinges, in this formalization of parallel composition on the fact: output + input gives output, not an internal action. This, on the other hand, does not mean to say, that *binary* associative synchronization is impossible. One would have to give up to *force* synchronization on common actions in parallel actions. Such a communication model is, for instance, used in CCS, and similar calculi.

Composition: example

• paralell composition of processes + buffers: 8.2.1

1

- relating executions of a composed automaton \leftrightarrow executions of the components
- given $\alpha = s_0 \pi_1 s_1 \dots$ of A: "projection" $\alpha \downarrow_{A_i}$ = subsequence obtained by
 - 1. deleting all pairs $\pi_r s_r$ where π_r not an A-action
 - 2. replace each remaining s_r by the *i*-th component s_i
- projection is analogously used on traces or arbitrary sequences of actions

Theorem 1. [Decomposition (8.1)] Given $A = \prod_{i \in I} A_i$.

•
$$\alpha \in execs(A)$$
, then $\alpha \downarrow_{A_i} \in execs(A_i)$

• $\alpha \in traces(A)$, then $\alpha \downarrow_{A_i} \in traces(A_i)$

Theorem 2. [Composition from executions (8.2)] Given

Model

- $A = \prod_{i \in I} A_i$
- α_i : an execution of A_i
- β : a sequence of actions in ext(A) s.t. $\beta \downarrow_{A_i} = trace(\alpha_i)$

Then there is an execution α of A such that $\beta = trace(\alpha)$ and $\alpha_i = \alpha \downarrow_{A_i}$ **Theorem 3.** [Composition from traces (8.3)] Given

- $A = \prod_{i \in I} A_i$
- β a sequence of actions in ext(A)
- $\beta \downarrow_{A_i} \in traces(A_i)$

Then

 $\beta \in traces(A).$

- \bullet operation on an I/O-automaton: hiding output
- after hiding: operation is internal \Rightarrow no further synchronization possible

for signatures: given S and $\Phi \subseteq out(S) \Rightarrow hide_{\Phi}(S) = S'$ defined as

- $int(S') \triangleq int(S) \cup \Phi$
- $in(S') \triangleq in(S)$
- $out(S') \triangleq out(S) \Phi$

note: $\Phi\cap in(S')=\emptyset$ by definition

for automata: simply using the definition for signatures, i.e., given A and $\Phi \subseteq out(A)$:

• $hide_{\Phi}(A)$ defined as A' given by replacing sig(A) by $hide_{\phi}(A)$

Fairness: informal

- asynchronous model: fairness becomes quite an issue
- informally: fair = "each one get's his turn" (here based on tasks)
- formally: abstract (and often difficult) notion, considering infinite behavior
- various "flavors" of fairness useful
- abstraction of a scheduler
- here: each task gets infinitely many opportunities to perform one of its actions

Definition 3. [Fairness] An execution fragment α of A is fair, if for each equivalence class C of tasks(A):

1. if α is finite, then C is not enabled in the final state of α

2. if α is infinite, then α contains

(a) infinitely many events from C, or
(b) infinitely many occurences of states in which C is disabled

- event = occurrence of an action in a sequence (execution, trace)
- *fairexecs*(A): fair executions of A, and *fairtraces*(A): fair traces of A, where a fair trace is a trace of a fair executions¹⁵

¹⁵Remember: trace cf. slide 9.

1

Asynchronous

System

- example 8.3.1
- example 8.3.2: *discrete clock*

Analogous to the corresponding properties for general traces/executions

Theorem 4. [Fair decomposition (8.4)] Given $A = \prod_{i \in I} A_i$.

- $\alpha \in fairexecs(A)$, then $\alpha \downarrow_{A_i} \in fairexecs(A_i)$
- $\alpha \in fairtraces(A)$, then $\alpha \downarrow_{A_i} \in fairtraces(A_i)$

Theorem 5. [Composition from fair executions (8.5)] Given

• $A = \prod_{i \in I} A_i$

- α_i : a fair execution of A_i
- β : a sequence of actions in ext(A) s.t. $\beta \downarrow_{A_i} = trace(\alpha_i)$

Then there is a fair execution α of A such that $\beta = trace(\alpha)$ and $\alpha_i = \alpha \downarrow_{A_i}$

Theorem 6. [Composition from fair traces (8.6)] Given

- $A = \prod_{i \in I} A_i$
- β a sequence of actions in ext(A)
- $\beta \downarrow_{A_i} \in fairtraces(A_i)$

Then

 $\beta \in fairtraces(A).$

Fairness example

- Example 8.3.3: 3 processes
 - every sent message is eventually received
 - if there is at least one init-event for each i, each processes sends infinitely many messages to each other, and each process send infinitely many decide messages

Fairness and finite prefix

"(Un-)fairness does not show up on finite prefixes of executions"

• fairness is not a safety property

1

- more formally: every finite executions can be extended into a fair execution (same for traces)
- **Theorem 7. [Fairness]** 1. If α is a finite execution of A, then there is a fair execution of A that starts with α .
- 2. The same holds analogously for traces.
- 3. If α is a finite execution of A and β is any (finite or infinite) sequence if input actions of A, then there is a fair execution $\alpha \cdot \alpha'$ of A such that the sequence of input actions in α' is exactly β .

Model

Input and output

- to apply this general model: make some conventions about I/O
- remember: in the synchronous model: designated state variables (write-once for outputs)
- in the asynchronous model: we simply use input and output actions

• most basic/simple class of properties: invariant assertion or invariant

"something which always holds"

- invariant of an automaton A: property which holds for all reachable states
- typically proven by induction on the number of steps¹⁶

¹⁶In the synchronous setting, we used induction on the number of rounds.

Trace properties and satisfaction

- remember: trace = "visible/observable" actions of an execution
- \Rightarrow often, properties of "external" interest are formulated over (fair) traces, i.e., extensionally by a set of traces,

Trace property P given by

1

- 1. sig(P), signature, containing no internal action¹⁷ 2. $traces(P) \subseteq acts(sig(P))$
- (at least) 2 interpretations of A satisfies P (" $A \models P$ ")
 - 1. extsig(A) = sig(P) and $traces(A) \subseteq traces(P)$
 - 2. extsig(A) = sig(P) and $fairtraces(A) \subseteq traces(P)$

¹⁷One cannot "look inside"

Model

Safety

- important class of trace properties¹⁸
- general slogan

"never something bad happens"

Definition 4. [Safety trace property] A trace property P is a safety (trace) property:

- 1. traces(P) is not empty
- 2. traces(P) is prefix closed¹⁹

¹⁸In this setting, safety is phrased in terms of trace properties.

¹⁹That implies the first point already.

Model

3. traces(P) is limit closed

Definition 5. [Limit closure] An set of traces T is limit closed: if β_1, β_2, \ldots is an infinite sequence of finite traces in T, such than for all i:

 β_i is a prefix of β_{i+i} ,

then the limit β (the unique sequence β that is the limit of β_i under the successive extension ordering) is also in T.

- intuition: if something bad happens, it happens in a finite amount of time by a particular event ⇒ limit closure
- note: a fairness property is not a safety property

Example 1. [8.5.2] "No decide happens without a preceding init".

Lemma 1. If P is a safety property, then the following statements are equivalent

1. $traces(A) \subseteq traces(P)$.

1

- 2. $fairtraces(A) \subseteq traces(P)$.
- 3. finitetraces(A) \subseteq traces(P).

Model

Liveness

• general slogan:

"something good will (indeed) happen"

Definition 6. [Liveness] A trace property P is a (trace) liveness property, if every finite sequence over acts(P) has some extension in P.

Example 2. [8.5.3] For every *init*" event, there will be a/infinite many matching *decide later*.

- proving a liveness property:²⁰ $fairtraces(P) \subseteq traces(P) =$ liveness property
- temporal logic:

1

- logic(s) targeted towards reasoning about reactive behavior/traces/ ...
- "temporal" does not (necessarily) mean real time: but ordering of events
- typical operators: "Always", "Eventually" (sometimes written \Box , \Diamond , \bigcirc ...)
- "do-it-yourself-method": progress functions²¹
 - proving that a particular event will happen
 - mapping from states of the automaton tp well-founded set
 - show that actions decrease the value

²⁰Often, fairness assumptions needed to prove liveness.

²¹one can use temp. logic to formalize this method. Anyway, we won't use temporal logic.

1

- safety and liveness: intuitive dual classes of properties
- this can be made formal/proven (in the following)
- note: the properties are phrased for traces, analogous properties holds for executions

Theorem 8. [Safe and live (8.8)] P is a safety and a liveness property \Rightarrow

$$P = acts(P)$$

Theorem 9. [Safety and liveness decomposition] Given trace property P with $traces(P) \neq \emptyset$. Then there exist a safety and a liveness property S and L:

1.
$$sig(S) = sig(L) = sig(P)$$
.

2. $traces(P) = traces(S) \cap traces(L)$.

- "divide-and-conquer" approach sometimes helpful in reasoning
- given²² $A = \prod_{i \in I} A_i$ and $P = \prod_{i \in I} P_i$, and local satisfaction: $A_i \models P_i$

Theorem 10. [Compositional reasoning] 1. If $extsig(A_i) = sig(P_i)$ and $traces(A_i) \subseteq traces(P_i)$, then and extsig(A) = extsig(P) and $traces(A) \subseteq traces(P)$.

2. If $extsig(A_i) = sig(P_i)$ and $traces(A_i) \subseteq fairtraces(P_i)$, then and extsig(A) = extsig(P) and $traces(A) \subseteq fairtraces(P)$.

²²Unless stated otherwise: by writing the products $\prod_{i \in I} A_i$ and $\prod_{i \in I} P_i$, we implicitly assert that those are well defined, especially that the constituents form a compatible collection of automata resp. trace properties.

1

System

$$\frac{extsig(A_i) = sig(P_i) \quad traces(A_i) \subseteq traces(P_i)}{traces(A) \subseteq traces(P)} COMP-TR$$
$$\frac{extsig(A_i) = sig(P_i) \quad fairtraces(A_i) \subseteq traces(P_i)}{fairtraces(A) \subseteq traces(P)} COMP-FTR$$

Further compositional reasoning

- using composition Theorem 3 on page 19 (or the corresponding one for fair traces)
 - "inverting" the previous reasoning

1

- drawing conclusion from projections to the common trace.
- compositional proof of safety properties

Compositional reasoning for safety properties

- exploiting that safety is violated in a finite prefix
- A preserves P: A is not the first to violate P
- if no A_i is the first violator, safety holds

1

Definition 7. [Preserving] P a safety property with $acts(P) \cap int(A) = \emptyset$ and $in(P) \cap out(A) = \emptyset$.

A preserves B, if for every finite sequence β of actions that does not include internal actions of A, and every $\pi \in out(A)$:

If $\beta \downarrow_{acts(P)} \in traces(P)$ and $\beta \pi \downarrow_A \in traces(A)$, then important $\beta \pi \downarrow_{acts(P)} \in traces(P)$.

The internal actions are not mentioned, of course.

Compositional reasoning & safety

Theorem 11. [Safety and comp. reasoning] Given $A \prod_{i \in I} A_i$. and a safety property with $acts(P) \cap int(A) = \emptyset$ and $in(P) \cap out(A) = \emptyset$:

1. If A_i preserves P for all i, then A preserves P

2. If A is closed, A preserves P, and $acts(P) \subseteq ext(A)$, then

 $traces(A) \downarrow_{acts(P)} \subseteq traces(P)$.

3. If A is closed, A preserves P, and acts(P) = ext(A), then

 $traces(A) \subseteq traces(P)$.

Model

Hierarchical proofs

- hierarchy: different level of abstraction
- from top to bottom:²³ successive refinements
- examples: simulation proofs in the material of the synchronous model
- problem: the two systems under comparison are not a strictly coupled as before
- needed: generalization of the simulation method to the asynchronous setting
- anyway: general approach: directed relationship:²⁴

"for any execution of the lower-level automaton, there is a "corresponding" execution of the higher-level automaton."

 ²³ "Higher" means: more abstract, less details etc. One could for instance intruduce more parallelism going top-down.
 ²⁴In the synchronous setting, the goal was that the implementation had the same behavior than the abstract system., at least under the assumption of determinism.

Simulation relation

Definition 8. [Simulation relation] • A and B with identical external interfaces.

• $f \subseteq states(A) \times states(B)$.

Then f is a simulation relation from A to B, if

Start condition: *if* $s \in start(A)$ *, then* $f(s) \cap start(B) \neq \emptyset$

- **Step condition:** *if* s *is a reachable state of* A*, and if* $u \in f(s)$ *where* u *is a reachable state of* B*:*
 - $s \xrightarrow{\pi} s'$, then there is an execution fragment α of B, starting in u and ending with some $u' \in f(s')$ such that

$$trace(\alpha) = trace(\pi)$$

- important proof technique, e.g., for trace
- aux. definition: B simulates A (B ≥ A), if there exists a simulation relation from A to B.

alternative words: A is simulated by $B (A \leq B)$

• Caveat: some people use the words "the other way around"

Theorem 12. [Simulation and trace inclusion] If there is a simulation relation from A to B, the the traces of A are included in the traces of B:

$$\frac{A \preceq B}{traces(A) \subseteq traces(B)}$$
 SIM

Simulation and safety property

• simulation: preservation of safety properties²⁵

$$\begin{array}{ccc} P \text{ is a safety property} & B \preceq A & A \models P \\ & B \models P \end{array}$$

- for liveness properties:
 - not that simple/direct

²⁵Remember: $A \models P$ means $traces(A) \subseteq traces(P)$.

1

Simulation and liveness properties

• we need to strengthen the coupling

Definition 9. [Correspondance] Given:

• A and B with identical input and output actions

Asynchronous

- α and β executions of A resp. B
- relation $f \subseteq states(A) \times states(B)$.

Then α and β correspond wrt. f (written $\alpha \bowtie_f \beta$), if

- 1. there exists a mapping g from indices (occurrences) of states in α to indices of states in β ,
 - g is monotone nondecreasing

• g exhausts all of β^{26}

1

- g-corresponding pairs of states are related by f
- between successive g-corresponding pairs of states, the traces in α and β are identical

Theorem 13. [Simulation with correspondence] If there is a simulation relation f from A to B^{27} , then for every execution α of A, there exists execution β of B such that $\alpha \bowtie_f \beta$.

²⁶I.e., the supremum of the range of g is the supremum of the indices of states in β . ²⁷I.e., $A \preceq B$

Complexity measures

- upper time bound for any subset of equivalence classes in tasks(A) (thus also for any task, a "full" equivalence class) ⇒
- $upper_C \in \mathbb{R}^{>0} + \infty$

1

- given a fair execution α of $A \Rightarrow$ associate a real-value time with each event of α .
 - 1. times are monontone non-decreasing in $\boldsymbol{\alpha}$
 - 2. if α is infinite, then the times approach $\infty^{\rm 28}$
 - 3. from any point in α , a task C can be enabled for time at most $upper_C$, before some action in C must occur
- timed execution = fair execution with times associated as described
- note: for a given set of bounds in $upper_C$: many ways of associating times to the events of α

²⁸sometime called non Zeno-ness.

- time until some designated event π in α occurs: supremum of times assignable to π in all such timed executions
- time between two events: likewise by the supremum of differences
- example 8.6.1

Indistinguishable executions

• indistinguishable = from the perspective of a subcomponent \Rightarrow projection

Definition 10. [Indistinguishable] Given: α , α' : executions of two composed systsm each containing automaton A. Then:

 α and α' are indistinguishable to A, if their projections onto A are identical:

$$\alpha \sim_A \alpha' \triangleq \alpha \downarrow_A = \alpha' \downarrow_A$$

1

- remember: transition relation in the asynchronous model: nondeterministic²⁹
- sometimes: "weighted" nondeterminism is useful \Rightarrow randomization/probabilistic I/O automata

Definition 11. [Probabilistic I/O automaton] A probabilistic I/O automaton is defined the same way as an ordinary I/O automaton (cf. Definition 1 on page 6), except that the successor states are given by a probability distribution

$$(s,\pi,P)$$
,

where P is a probability distribution over some subset of the states.

• semantics/execution: series of 2 non-deterministic choices!

²⁹In the synchronous (network) model, we had some next-state *function*.

1. choose the next transition $s \xrightarrow{\pi} P$

1

- 2. choose the state according to the distribution
- restriction: choice of the transition should be fair
- "inside" each probablistic automaton, there is a nondeterministic one, forgetting the distribution $(\mathcal{N}(A))^{30}$

 $^{^{30}}$ sucessor states with probability 0 are not represented in the non-deterministic choice.

Literatur

[Lyn96] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.