
Abschnitt I

Asynchronous Shared Memory Model

Inhalt: specialization of I/O automata · processes and shared var’s
· indistinguishable states · variable types · examples for variable types · behavior
and composition for variable types

Literatur: The material is taken from [Lyn96, Chapter 9].



1 Asynchronous Shared Memory Model

Intro

• ASMS (“asynchronous shared memory system”) =

– finite number of processes1

– communicating (internally) via shared variables

• port: interaction with the environment

• Cf. Figure 9.1, p 238

• modelling by I/O-automata:

– one! big automaton per system.2

– rest is “convention/interpretation” and restriction on what the automaton is
allowed to do

1 6= automata
2alternative are possible, but not more complex, if we want to stay in the chosen framework.

2



1 Asynchronous Shared Memory Model

Model: specifics for SM

• many things similar to before, but now one thinks of processes inside the
automaton, providing some internal structure

• processes indexed 1, . . . n,

• each states states i, resp. start-state start i,

• one shared var x ⇒ value as state valuesx, initially initialx

• actions

– each one associated with one of the processes
– some of the internal actions may be (additionally) associated with a shared var
– external actions (i/o) of process i = communication “at port i”

• transitions trans(A)

3



1 Asynchronous Shared Memory Model

– some locality restrictions, to reflect intended system structure
1. processinternal action: (s, π, s′), s, s′ ∈ states i, non-trivial effect only for i,

rest unchanged
2. process-variable action:
3. effect:

(s, v), π, (s′, v′),

where s, s′ ∈ states i, rest of the state-vector unchanged
∗ enabledness proviso: enabledness of a transition of i must depend only on

the state of i, not on the value of x.

• tasks:

– partitioning should be consistent with the process structure
⇒ each task (= eq. class) should include locally controlled actions of one process,

only
– often: 1 task per process (i.e., process is sequential

4



1 Asynchronous Shared Memory Model

Example

• n processes, accessing one common shared var x

• the “first” process decides on the value

Signature:

input:

init(v)i

output:

decide(v)i

internal:

accessi

States of i

status ∈ {idle ,access ,decide ,done } = idle

input : V + unknown = unknown

output : V + unknown = unknown

Transitions of i:

init(v)i

effect:

input := v

if status = idle

5



1 Asynchronous Shared Memory Model

then status := access

accessi:

precondition:

status = access

effect:

if x = unknown then x := input

output := x;

status := decide

decide(v)i

precondition:

status = decide

output = v

effect:

status := done

• properties (informally)

– liveness/progress/termination: decisions don’t take forever
– agreement: decisions are consistent
– validity: no trivial decisions are taken

• properties as trace properties, correctness claim: trace property P with sig(P ) =
extsig(A)

6



1 Asynchronous Shared Memory Model

– if (Lynch: exactly) one init i event appears in β, then exactly one decidei

appears in β (for all i)
– if no init i appears in β, then no decidei event appears in β (for all i)
agreement : if a decide(v)i- and a decide(w)-event appears in β, then v = w

validity : if a decidei(v)-event appears in β, then some initj(v) appears in

• Then

[[A]]fair ⊆ [[P ]]trace

7



1 Asynchronous Shared Memory Model

Environment model

• modeling the system environment explicitely as one or more I/O-automata

• allows to specify assumptions about the environment by “programming” them3

• See Figure 9.2

• Example 9.2.1:

– environment for the previous 1-variable process system
– one user automaton Ui per system process Pi.
– each user process: request → wait → done (+ commonly-unreachable error-

state, if unexpected decision comes)

Ui automaton

Signature:

3alternative: logical description.

8



1 Asynchronous Shared Memory Model

Input : decide(v)i, v ∈ V

Output: init(v)i, v ∈ V

Internal : dummyi

States:

status : {request , wait , done } = request;

decide : V + unknown = unknown;

error : Bool = false;

Transitions:

init(v)i:

precondition: status = request ∨ error = true

effect: if error = false then status := wait

dummy i:

precondition: error = true

effect: none;

decide(v)i:

effect:

if error = false

then if status = wait

then decision := v

status := done

else error := true

Tasks : all locally controlled actions are in one class.

9



1 Asynchronous Shared Memory Model

Users + SMS

• cf. Figure 9.2, p 243

• properties: for every fair execution

– there is exactly one init i and one decidei-event
– agreement, validity

• formally: trace property Q, over sig(Q) = init , decide

termination β contains exactly one init i event followed by exactly one decidei

event.
agreement if decide(v)i and decide(w)j both in β, then v = w

validity if a decide(v)i occurs, then some init(v)j occurs in β

[[A ×
∏

Ui]]
fair ⊆ [[Q]]trace

10



1 Asynchronous Shared Memory Model

Indistinguishable states

• useful for impossibility results later

• notion of “observability”: things “look” equal from a given perspective, e.g.,
from the perspective of one process/automaton (using projection)

• remember also indistinguishable executions for synchronous systems (∼i) and for
I/O-automata, used (e.g.) for results in synchronous distributed consensus

• here: “observer” i “sees”: his process’ + his user’s state + shared var’s (=all) it
accesses

Definition 1. [Indistinguishable] Given states s and s′ of system A×
∏

Ui. Then
s and s′ are indistinguishable to process i (s ∼i s′), if

1. state of process i,

11



1 Asynchronous Shared Memory Model

2. the state of Ui, and

3. values of all shared var’s

are the same in s and s′.

12



1 Asynchronous Shared Memory Model

Shared variable types (intro)

• so far: no restrictions on what is doable to a shared variable4

• results depend on restrictions, for instance

– write
– read and give back
– test
– atomic combinations thereof

⇒ classification, shared var type

• note: not meant as restiction on the value domain,

• more: abstract data type/interface type intuition5

4except assumption of determinism.
5another intuition could be objects with get- and set-methods (or other) + various “synchronization” disciplines.

13



1 Asynchronous Shared Memory Model

Shared variable type

Definition 2. [Variable type] A variable type consists of

• a set V of values

• an initial values v0 ∈ V

• set of invocations and set of responses

• a function:

f : invocations × V → responses × V

14



1 Asynchronous Shared Memory Model

Shared variable type in an automaton

• variable type 6= I/O automaton

• “atomic” interaction: invocation and response at the same time = one! event

• shared variable x of given type in a SMS A:

– valuesx = V

– initialx = v0

– transitions of A wrt. x must match the restrictions imposed by the var type
∗ actions involving x must be associated with one invocation a of the var type.
∗ describable6 in a local guarded command style: given p predicate on statei

and g ⊆ states i × responses × states i

Transitions involving i and a

Precondition: p(statei)

Effect: (b,x) := f(a,x) // effect as given by var type

statei := // b = response => ‘‘sync.’’ with re

any s such that (state_i ,b,s) ∈ g

6In the examples: not necessarily explicitely.

15



1 Asynchronous Shared Memory Model

Read/write variable

• most common variable type

• 2 separate interactions for reading and writing ⇒ weak sync power

• read/write variable or (read/write) register

• arbitrary value domain, and one initial value

• interaction:

– invocations: read , write(v)
– responses: ack

f(read , v) = (v, v)

f(write(w), v) = (ack , w)

16



1 Asynchronous Shared Memory Model

• note: example on slide 5: not describable as register

States of i

status ∈ {idle ,access ,decide ,done } = idle

input : V + unknown = unknown

output : V + unknown = unknown

// -----------------------------------------------------

Transitions of i:

init(v)i

effect:

input := v

if status = idle then status := read

readi:

precondition: status = read

effect:

if x = unknown

then output := input

status := write

else output := x

status := decide

write(v)i:

precondition: status = write

v = input

effect: x := v

status := decide

decide(v)i

17



1 Asynchronous Shared Memory Model

precondition: status = decide

output = v

effect: status := done

18



1 Asynchronous Shared Memory Model

Read/write more explicitely

• given code not literally in the required form; conceptually it is (unlike represen-
tation on slide 5)

• for instance: writei(v):

– guard is status = read

– effect g ⊆ states i × (V + unknown) × V , given by:
if b = unknown

then output := input

status := write

else output := b

status := decide

• for write(v)i-action

– guard-predicate p: status = write

– effect g is the set of triples (s, b, s′) ∈ states i× (V +unknown)×V , given by:

19



1 Asynchronous Shared Memory Model

status := decide

• note: agreement does no longer hold!

20



1 Asynchronous Shared Memory Model

Read-modify-write

• another important, more sophisticated shared var type

• more powerful

• one instantaneous operation on x

1. read x

2. compute (depending on x): change own state and calculate value for x

3. write x

• complex to implement on a multiprocessor architecture, not only atomic access
(“mutex”), also fairness is required7

• problem: how to model rmw-variable as variable type?
7arbitration

21



1 Asynchronous Shared Memory Model

• higher-order definition:

– invocation: state-change function h : V → V

– response: value of variable
– effect-function f : (V → V ) × V → (V × V )

f(h, v) = (v, h(v))

Example 1. Cf. Example on slide 5:

hv(x) =

{

v if x = unknown

x otherwise

• further variable types: special instances of read-modify-write

– compare-and-swap
– swap
– test-and-set
– fetch-and-add

22



1 Asynchronous Shared Memory Model

Other variable types

• compare and swap(u, v)

f(compare and swap(u, v), w) =

{

(w, v) if u = w

(w,w) otherwise

• swap(u) f(swap(u), v) = (v, u)

• test and set() f(test and set , v) = (v, 1)8

• fetch and add(u) f(fetch and add(u), v) = (v, v + w)

8assuming 1 ∈ V .

23



1 Asynchronous Shared Memory Model

Executions of a variable type

• executions: as for I/O-automata: sequence of states and interface actions

• finite or infinite

v0a1b1v1a2b2 . . . vr

v0a1b1v1a2b2 . . .

– as specified by the automaton
∗ v0: initial value of the var type
∗ (vk, ak+1, bk+1vk+1 satisfiy the functions of the var type:

(bk+1, vk+1) = f(ak+1, vk)

• traces: “interface” behavior: ignore the states, consider only the operations

24



1 Asynchronous Shared Memory Model

Composition

• straightforward definition (interleaving)

• a countable collection {Ti}i∈I: compatible, if the sets of invocations are disjoint,
same for the responses9

Definition 3. [Composition of variable types] Given {Ti}i∈I compatible. Then
the composition T =

∏

i∈I Ti is defined by (as expected):

• V = cartesian product, initial value v0 accordingly

• sets of invocations (resp. responses) is the —disjoint— union of the invocations
(resp. responses) of the Ti.

• effect-function: pointwise (but interleaving): assume, a is an invocation of i,
then f(a, w) is given by: apply f to the ith component of w ⇒ yields (b, v),
then set ith component of w to v

9No harm=synchronization done —except human confusion— if one’s var’s invocation matches another var’s response.

25



1 Asynchronous Shared Memory Model

Then

26



1 Asynchronous Shared Memory Model

Complexity measures

• time complexity measure

– special case of the definition of I/O automata
– per task C: upper bound l ⇒ upper bound for time between successive chances

by task C to perform a task
– time until some event in π = suprenum of times assignable to π respecting the

upper bounds; likewise time between events
– not measured: “contention” time

• other potential (static) measures: number of shared vars, size of their value sets

27



1 Asynchronous Shared Memory Model

Failures, randomization

• failures

– remember: failures in synchronous network model
∗ process failures: stopping, Byzantine
∗ link failures: message loss
∗ channels with “failures” in the asynchronous network model: losing, dupli-

cating, reordering, (finite) duplication
– just use the definition for I/O-automata:
∗ probabilistic: transitions of the form (s, π, P )
∗ non-deterministic: transitions of the form (s, π, S).

28



1 Asynchronous Shared Memory Model

Literatur

[Lyn96] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.

29


