Abschnitt I

Asynchronous Shared Memory Model

Inhalt: specialization of I/O automata \cdot processes and shared var's \cdot indistinguishable states \cdot variable types \cdot examples for variable types \cdot behavior and composition for variable types

Literatur: The material is taken from [Lyn96, Chapter 9].

Shared

Intro

- ASMS ("asynchronous shared memory system") =
 - finite number of $processes^1$
 - communicating (internally) via shared variables
- port: interaction with the environment
- Cf. Figure 9.1, p 238
- modelling by I/O-automata:
 - one! big automaton per system.²
 - rest is "convention/interpretation" and restriction on what the automaton is allowed to do

 $^{^{1}\}neq$ automata

²alternative are possible, but not more complex, if we want to stay in the chosen framework.

- many things similar to before, but now one thinks of *processes* inside the automaton, providing some internal structure
- processes indexed 1, \dots n,
- each states *states*_i, resp. start-state *start*_i,
- one shared var $x \Rightarrow$ value as state $values_x$, initially $initial_x$
- actions
 - each one associated with one of the processes
 - some of the internal actions may be (additionally) associated with a shared var
 - external actions (i/o) of process i = communication "at port i"
- transitions trans(A)

Asynchronous	Shared	Memory	Model
- some locality restrictions,	to reflect intended syste	m structure	
1. processinternal action:	(s,π,s') , $s,s' \in states_i$,	non-trivial	effect only for i ,
rest unchanged			

- 2. process-variable action:
- 3. effect:

 $(s,v),\pi,(s',v'),$

where $s, s' \in states_i$, rest of the state-vector unchanged

- * enabledness proviso: enabledness of a transition of i must depend only on the state of i, not on the value of x.
- tasks:
 - partitioning should be consistent with the process structure
 - \Rightarrow each task (= eq. class) should include locally controlled actions of one process, only
 - often: 1 task per process (i.e., process is sequential

- n processes, accessing one common shared var x
- the "first" process decides on the value

```
Signature:
  input:
    init(v)<sub>i</sub>
  output:
    decide(v)_i
  internal:
    access_i
States of i
  status 
{ idle, access, decide, done } = idle
   input : V + unknown
                                               = unknown
   output : V + unknown
                                               = unknown
Transitions of i:
  init(v)_i
    effect:
    input := v
    if
          status = idle
```

```
Asynchronous
  then status := access
access_i:
  precondition:
    status = access
  effect:
    if x = unknown then x := input
    output := x;
    status := decide
decide(v)_i
  precondition:
    status = decide
    output = v
  effect:
     status := done
```

• properties (informally)

1

- liveness/progress/termination: decisions don't take forever
- agreement: decisions are consistent
- validity: no trivial decisions are taken
- properties as trace properties, correctness claim: trace property P with sig(P) = extsig(A)

Shared

Memory

Asynchronous Shared Memory Model - if (Lynch: exactly) one $init_i$ event appears in β , then exactly one $decide_i$ appears in β (for all i)

- if no *init_i* appears in β , then no *decide_i* event appears in β (for all *i*) **agreement** : if a *decide*(*v*)_{*i*}- and a *decide*(*w*)-event appears in β , then *v* = *w* **validity** : if a *decide_i*(*v*)-event appears in β , then some *init_j*(*v*) appears in

• Then

1

 $\llbracket A \rrbracket^{fair} \subseteq \llbracket P \rrbracket^{trace}$

Memory

Environment model

- modeling the system environment explicitely as one or more I/O-automata
- allows to specify assumptions about the environment by "programming" them³
- See Figure 9.2
- Example 9.2.1:
 - environment for the previous 1-variable process system
 - one user automaton U_i per system process P_i .
 - each user process: $request \rightarrow wait \rightarrow done$ (+ commonly-unreachable errorstate, if unexpected decision comes)

 U_i automaton

Signature:

³alternative: logical description.

```
Asynchronous
                                         Shared
                                                               Memory
  Input: decide(v)_i, v \in V
  Output: init(v)<sub>i</sub>, v \in V
  Internal: dummy<sub>i</sub>
States:
  status : {request, wait, done} = request;
  decide : V + unknown = unknown;
  error : Bool = false;
Transitions:
  init(v)_i:
    precondition: status = request \lor error = true
                    if error = false then status := wait
    effect:
 \operatorname{dummy}_i:
   precondition: error = true
   effect:
                   none;
 decide(v)<sub>i</sub>:
   effect:
     if
           error = false
     then if status = wait
           then decision := v
                  status
                           := done
            else error := true
```

Tasks: all locally controlled actions are in one class.

• cf. Figure 9.2, p 243

1

- properties: for every fair execution
 - there is exactly one $init_i$ and one $decide_i$ -event
 - agreement, validity
- formally: trace property Q, over sig(Q) = init, decide

termination β contains exactly one $init_i$ event followed by exactly one $decide_i$ event.

agreement if $decide(v)_i$ and $decide(w)_j$ both in β , then v = wvalidity if a $decide(v)_i$ occurs, then some $init(v)_i$ occurs in β

 $\llbracket A \times \prod U_i \rrbracket^{fair} \subseteq \llbracket Q \rrbracket^{trace}$

Shared

Indistinguishable states

- useful for impossibility results later
- notion of "observability": things "look" equal from a given perspective, e.g., from the perspective of one process/automaton (using projection)
- remember also indistinguishable executions for synchronous systems (\sim_i) and for I/O-automata, used (e.g.) for results in synchronous distributed consensus
- here: "observer" i "sees": his process' + his user's state + shared var's (=all) it accesses

Definition 1. [Indistinguishable] Given states s and s' of system $A \times \prod U_i$. Then s and s' are indistinguishable to process i ($s \sim_i s'$), if

1. state of process i,

- 2. the state of U_i , and
- 3. values of all shared var's

are the same in s and s'.

Shared variable types (intro)

- so far: no restrictions on what is doable to a shared variable⁴
- results depend on restrictions, for instance
 - write
 - read and give back
 - test
 - atomic combinations thereof
- \Rightarrow classification, shared var type
 - note: not meant as restiction on the value domain,
 - more: abstract data type/interface type intuition⁵

⁴except assumption of determinism.

⁵another intuition could be objects with get- and set-methods (or other) + various "synchronization" disciplines.

Memory

Shared variable type

Definition 2. [Variable type] A variable type consists of

- a set V of values
- an initial values $v_0 \in V$
- set of invocations and set of responses
- a function:

 $f: invocations \times V \rightarrow responses \times V$

- variable type $\neq I/O$ automaton
- "atomic" interaction: invocation and response at the same time = one! event
- shared variable x of given type in a SMS A:
 - $values_x = V$

- $initial_x = v_0$
- transitions of A wrt. x must match the restrictions imposed by the var type
 - \ast actions involving x must be associated with one invocation a of the var type.
 - * describable⁶ in a local guarded command style: given p predicate on $state_i$ and $g \subseteq states_i \times responses \times states_i$

```
Transitions involving i and a

Precondition: p(state_i)

Effect: (b,x) := f(a,x) // effect as given by var type

state_i := // b = response => ''sync.'' with re

any s such that (state_i,b,s) \in g
```

⁶In the examples: not necessarily explicitely.

Read/write variable

- most common variable type
- 2 separate interactions for reading and writing \Rightarrow weak sync power
- read/write variable or (read/write) register
- arbitrary value domain, and one initial value
- interaction:
 - invocations: read, write(v)
 - responses: *ack*

$$f(read, v) = (v, v)$$
$$f(write(w), v) = (ack, w)$$

Asynchronous

Shared

• note: example on slide 5: not describable as register

```
States of i
  status ∈ {idle,access,decide,done} = idle
   input : V + unknown
                                      = unknown
   output : V + unknown
                                      = unknown
Transitions of i:
  init(v)_i
    effect:
    input := v
    if status = idle then status := read
   read_i:
     precondition: status = read
     effect:
      if x = unknown
      then output := input
           status := write
       else output := x
           status := decide
   write(v)_i:
     precondition: status = write
                       = input
                 V
     effect: x := v
                 status := decide
  decide(v)_i
```

1	Asynchronous				Shared	Memory	Model
	precondition:	status	=	decide			
		output	=	v			
	effect:	status	:=	done			

Read/write more explicitely

- given code not literally in the required form; conceptually it is (unlike representation on slide 5)
- for instance: $write_i(v)$:

```
- guard is status = read

- effect g \subseteq states_i \times (V + unknown) \times V, given by:

if b = unknown

then output := input

status := write

else output := b

status := decide
```

- for $write(v)_i$ -action
 - guard-predicate p: status = write
 - effect g is the set of triples $(s, b, s') \in states_i \times (V + unknown) \times V$, given by:

1
T

status := decide

• note: agreement does no longer hold!

Memory

Read-modify-write

- another important, more sophisticated shared var type
- more powerful
- one instantaneous operation on x
 - 1. read x
 - 2. compute (depending on x): change own state and calculate value for x
 - 3. write x
- complex to implement on a multiprocessor architecture, not only atomic access ("mutex"), also fairness is required⁷
- problem: how to model rmw-variable as variable type?

⁷arbitration

- higher-order definition:
 - invocation: state-change function $h: V \rightarrow V$
 - response: value of variable
 - effect-function $f: (V \to V) \times V \to (V \times V)$

$$f(h,v) = (v,h(v))$$

Example 1. Cf. Example on slide 5:

$$h_v(x) = \begin{cases} v & \text{if } x = unknown \\ x & \text{otherwise} \end{cases}$$

- further variable types: special instances of read-modify-write
 - compare-and-swap
 - swap
 - test-and-set
 - fetch-and-add

Memory

Other variable types

• $compare_and_swap(u, v)$

$$f(compare_and_swap(u,v),w) = \begin{cases} (w,v) & \text{if } u = w \\ (w,w) & \text{otherwise} \end{cases}$$

•
$$swap(u)$$
 $f(swap(u), v) = (v, u)$

- $test_and_set()$ $f(test_and_set, v) = (v, 1)^8$
- $fetch_and_add(u)$ $f(fetch_and_add(u), v) = (v, v + w)$

⁸assuming $1 \in V$.

- \bullet executions: as for I/O-automata: sequence of states and interface actions
- finite or infinite

$$v_0a_1b_1v_1a_2b_2\ldots v_r$$
$$v_0a_1b_1v_1a_2b_2\ldots$$

- as specified by the automaton
 - $* v_0$: initial value of the var type
 - * $(v_k, a_{k+1}, b_{k+1}v_{k+1})$ satisfy the functions of the var type:

$$(b_{k+1}, v_{k+1}) = f(a_{k+1}, v_k)$$

• traces: "interface" behavior: ignore the states, consider only the operations

• straightforward definition (interleaving)

1

• a countable collection $\{\mathcal{T}_i\}_{i \in \mathcal{I}}$: compatible, if the sets of invocations are disjoint, same for the responses⁹

Definition 3. [Composition of variable types] Given $\{\mathcal{T}_i\}_{i \in \mathcal{I}}$ compatible. Then the composition $\mathcal{T} = \prod_{i \in \mathcal{I}} \mathcal{T}_i$ is defined by (as expected):

- $V = cartesian \ product$, initial value v_0 accordingly
- sets of invocations (resp. responses) is the —disjoint— union of the invocations (resp. responses) of the T_i .
- effect-function: pointwise (but interleaving): assume, a is an invocation of i, then f(a, w) is given by: apply f to the *i*th component of $w \Rightarrow$ yields (b, v), then set *i*th component of w to v

⁹No harm=synchronization done —except human confusion— if one's var's invocation matches another var's response.

Shared

Then

Memory

Complexity measures

- time complexity measure
 - special case of the definition of ${\rm I}/{\rm O}$ automata
 - per task C: upper bound $l \Rightarrow$ upper bound for time between successive chances by task C to perform a task
 - time until some event in π = suprenum of times assignable to π respecting the upper bounds; likewise time between events
 - not measured: "contention" time
- other potential (static) measures: number of shared vars, size of their value sets

Failures, randomization

• failures

- remember: failures in synchronous network model
 - * process failures: stopping, Byzantine
 - * link failures: message loss
 - * channels with "failures" in the asynchronous network model: losing, duplicating, reordering, (finite) duplication
- just use the definition for I/O-automata:
 - * probabilistic: transitions of the form (s, π, P)
 - * non-deterministic: transitions of the form (s, π, S) .

Literatur

[Lyn96] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.