Abschnitt I

Asynchronous Shared Memory Model

Inhalt: specialization of I/O automata · processes and shared var’s · indistinguishable states · variable types · examples for variable types · behavior and composition for variable types

Literatur: The material is taken from [Lyn96, Chapter 9].
Intro

• ASMS ("asynchronous shared memory system") =
 – finite number of processes\(^1\)
 – communicating (internally) via shared variables

• port: interaction with the environment

• Cf. Figure 9.1, p 238

• modelling by I/O-automata:
 – one! big automaton per system.\(^2\)
 – rest is “convention/interpretation” and restriction on what the automaton is allowed to do

\(^1\)\(\neq\) automata
\(^2\)alternative are possible, but not more complex, if we want to stay in the chosen framework.
Asynchronous Shared Memory Model

Model: specifics for SM

• many things similar to before, but now one thinks of processes inside the automaton, providing some internal structure

• processes indexed 1, …, n,

• each states $states_i$, resp. start-state $start_i$,

• one shared var $x \Rightarrow$ value as state $values_x$, initially $initial_x$

• actions
 – each one associated with one of the processes
 – some of the internal actions may be (additionally) associated with a shared var
 – external actions (i/o) of process $i =$ communication “at port i”

• transitions $trans(A)$
– some **locality** restrictions, to reflect intended system structure

1. **processinternal** action: \((s, \pi, s')\), \(s, s' \in states_i\), non-trivial effect only for \(i\), rest unchanged

2. **process-variable** action:

3. effect:

\[(s, v), \pi, (s', v')\],

where \(s, s' \in states_i\), rest of the state-vector unchanged

* **enabledness** proviso: enabledness of a transition of \(i\) must depend only on the state of \(i\), not on the value of \(x\).

- **tasks:**

 – partitioning should be **consistent** with the process structure

 \(\Rightarrow\) each task (\(=\) eq. class) should include **locally controlled** actions of one process, only

 – often: 1 task per process (i.e., process is **sequential**
• n processes, accessing one common shared var x

• the “first” process decides on the value

Signature:
input:
init(v_i)
output:
decide(v_i)
internal:
access$_i$

States of i
status $\in \{\text{idle, access, decide, done}\} = \text{idle}$
input : $V + \text{unknown} = \text{unknown}$
output : $V + \text{unknown} = \text{unknown}$

Transitions of i:
init(v_i)
effect:
input := v
if status = idle
then status := access

access_i:
 precondition:
 status = access
 effect:
 if x = unknown then x := input
 output := x;
 status := decide

decide(v)_i
 precondition:
 status = decide
 output = v
 effect:
 status := done

• properties (informally)
 – liveness/progress/termination: decisions don’t take forever
 – agreement: decisions are consistent
 – validity: no trivial decisions are taken

• properties as trace properties, correctness claim: trace property \(P \) with \(\text{sig}(P) = \text{extsig}(A) \)
– if (Lynch: exactly) one \(\text{init}_i \) event appears in \(\beta \), then exactly one \(\text{decide}_i \) appears in \(\beta \) (for all \(i \))
– if no \(\text{init}_i \) appears in \(\beta \), then no \(\text{decide}_i \) event appears in \(\beta \) (for all \(i \))

agreement : if a \(\text{decide}(v)_i \) and a \(\text{decide}(w) \)-event appears in \(\beta \), then \(v = w \)

validity : if a \(\text{decide}_i(v) \)-event appears in \(\beta \), then some \(\text{init}_j(v) \) appears in

• Then

\[
[A]^{\text{fair}} \subseteq [P]^{\text{trace}}
\]
modeling the system environment explicitly as one or more I/O-automata

allows to specify assumptions about the environment by “programming” them

See Figure 9.2

Example 9.2.1:

– environment for the previous 1-variable process system
– one user automaton U_i per system process P_i.
– each user process: request \rightarrow wait \rightarrow done (+ commonly-unreachable error-state, if unexpected decision comes)

U_i automaton

Signature:

\[\text{alternative: logical description.}\]
Input: \(\text{decide}(v)_i, \ v \in V \)
Output: \(\text{init}(v)_i, \ v \in V \)
Internal: \(\text{dummy}_i \)

States:
- status: \{request, wait, done\} = request;
- decide: \(V + \text{unknown} = \text{unknown} \);
- error: \(\text{Bool} = \text{false} \);

Transitions:
- \(\text{init}(v)_i \):
 - precondition: status = request \lor error = true
 - effect: if error = false then status := wait
- \(\text{dummy}_i \):
 - precondition: error = true
 - effect: none;
- \(\text{decide}(v)_i \):
 - effect:
 - if error = false
 - then if status = wait
 - then decision := v
 - status := done
 - else error := true

Tasks: all locally controlled actions are in one class.
• cf. Figure 9.2, p 243

• properties: for every fair execution
 – there is exactly one $init_i$ and one $decide_i$-event
 – agreement, validity

• formally: trace property Q, over $\text{sig}(Q) = init, decide$

 termination β contains exactly one $init_i$ event followed by exactly one $decide_i$ event.
 agreement if $decide(v)_i$ and $decide(w)_j$ both in β, then $v = w$
 validity if a $decide(v)_i$ occurs, then some $init(v)_j$ occurs in β

$$[A \times \prod U_i]^{fair} \subseteq [Q]^{trace}$$
Indistinguishable states

- useful for impossibility results later

- notion of “observability”: things “look” equal from a given perspective, e.g., from the perspective of one process/automaton (using projection)

- remember also indistinguishable executions for synchronous systems (\sim_i) and for I/O-automata, used (e.g.) for results in synchronous distributed consensus

- here: “observer” i “sees”: his process’ + his user’s state + shared var’s (=all) it accesses

Definition 1. [Indistinguishable] Given states s and s' of system $A \times \prod U_i$. Then s and s' are indistinguishable to process i ($s \sim_i s'$), if

1. state of process i,

2. *the state of* U_i, *and*

3. *values of all shared var’s*

are the same in s *and* s'.
Shared variable types (intro)

• so far: no restrictions on what is doable to a shared variable\(^4\)

• results depend on restrictions, for instance

 – write
 – read and give back
 – test
 – atomic combinations thereof

⇒ classification, shared var type

• note: not meant as restriction on the value domain,

• more: abstract data type/interface type intuition\(^5\)

\(^4\) except assumption of determinism.
\(^5\) another intuition could be objects with get- and set-methods (or other) + various “synchronization” disciplines.
Definition 2. [Variable type] A \textit{variable type} consists of

\begin{itemize}
 \item a set V of \textit{values}
 \item an \textit{initial values} $v_0 \in V$
 \item set of \textit{invocations} and set of \textit{responses}
 \item a function:
 \[
 f : \text{invocations} \times V \rightarrow \text{responses} \times V
 \]
\end{itemize}
Asynchronous Shared Memory Model

Shared variable type in an automaton

- variable type \neq I/O automaton
- “atomic” interaction: invocation and response at the same time = one! event
- shared variable x of given type in a SMS A:
 - $values_x = V$
 - $initial_x = v_0$
 - transitions of A wrt. x must match the restrictions imposed by the var type
 * actions involving x must be associated with one invocation a of the var type.
 * describable6 in a local guarded command style: given p predicate on $state_i$ and $g \subseteq states_i \times responses \times states_i$

Transitions involving i and a

Precondition: $p(state_i)$
Effect: $(b,x) := f(a,x)$ // effect as given by var type
 $state_i :=$ // $b = response$ => ‘‘sync.’’ with re
 any s such that $(state_i,b,s) \in g$

6In the examples: not necessarily explicitly.
Read/write variable

- most **common** variable type
- 2 **separate** interactions for reading and writing \Rightarrow weak sync power
- **read/write** variable or (read/write) **register**
- arbitrary value domain, and one initial value

interaction:
- **invocations:** read, $\text{write}(v)$
- **responses:** ack

\[
\begin{align*}
\text{f(read, v)} & = (v, v) \\
\text{f(write(w), v)} & = (\text{ack}, w)
\end{align*}
\]
Asynchronous Shared Memory Model

- note: example on slide 5: not describable as register

States of \(i \)
- \(\text{status} \in \{\text{idle, access, decide, done}\} = \text{idle} \)
- \(\text{input} : V + \text{unknown} = \text{unknown} \)
- \(\text{output} : V + \text{unknown} = \text{unknown} \)

Transitions of \(i \):

- \(\text{init}(v)_i \)
 - effect:
 - \(\text{input} := v \)
 - if \(\text{status} = \text{idle} \) then \(\text{status} := \text{read} \)

- \(\text{read}_i \):
 - precondition: \(\text{status} = \text{read} \)
 - effect:
 - if \(x = \text{unknown} \) then \(\text{output} := \text{input} \)
 - \(\text{status} := \text{write} \)
 - else \(\text{output} := x \)
 - \(\text{status} := \text{decide} \)

- \(\text{write}(v)_i \):
 - precondition: \(\text{status} = \text{write} \)
 - \(v = \text{input} \)
 - effect:
 - \(x := v \)
 - \(\text{status} := \text{decide} \)

- \(\text{decide}(v)_i \)
Asynchronous Shared Memory Model

precondition: status = decide
output = v

effect: status := done
Read/write more explicitly

• given code not literally in the required form; conceptually it is (unlike representation on slide 5)

• for instance: \(\text{write}_i(v) \):

 – guard is \(\text{status} = \text{read} \)

 – effect \(g \subseteq \text{states}_i \times (V + \text{unknown}) \times V \), given by:

 \[
 \begin{align*}
 \text{if} & \quad b = \text{unknown} \\
 \text{then} & \quad \text{output} := \text{input} \\
 & \quad \text{status} := \text{write} \\
 \text{else} & \quad \text{output} := b \\
 & \quad \text{status} := \text{decide}
 \end{align*}
 \]

• for \(\text{write}(v)_i \)-action

 – guard-predicate \(p: \text{status} = \text{write} \)

 – effect \(g \) is the set of triples \((s, b, s') \in \text{states}_i \times (V + \text{unknown}) \times V \), given by:
status := decide

- note: agreement does no longer hold!
Asynchronous Shared Memory Model

Read-modify-write

- another important, more sophisticated shared var type
- more powerful
- one instantaneous operation on x
 1. read x
 2. compute (depending on x): change own state and calculate value for x
 3. write x

- complex to implement on a multiprocessor architecture, not only atomic access ("mutex"), also fairness is required\(^7\)

- problem: how to model rmw-variable as variable type?

\(^7\) arbitration
• higher-order definition:
 – invocation: state-change function $h : V \rightarrow V$
 – response: value of variable
 – effect-function $f : (V \rightarrow V) \times V \rightarrow (V \times V)$

$$f(h, v) = (v, h(v))$$

Example 1. Cf. Example on slide 5:

$$h_v(x) = \begin{cases} v & \text{if } x = \text{unknown} \\ x & \text{otherwise} \end{cases}$$

• further variable types: special instances of read-modify-write
 – compare-and-swap
 – swap
 – test-and-set
 – fetch-and-add
Other variable types

- \textit{compare_and_swap}(u, v)

\[
f(\text{compare_and_swap}(u, v), w) = \begin{cases}
(w, v) & \text{if } u = w \\
(w, w) & \text{otherwise}
\end{cases}
\]

- \textit{swap}(u)

\[
f(\text{swap}(u), v) = (v, u)
\]

- \textit{test_and_set}()

\[
f(\text{test_and_set}, v) = (v, 1)^8
\]

- \textit{fetch_and_add}(u)

\[
f(\text{fetch_and_add}(u), v) = (v, v + w)
\]

\[^8\text{assuming } 1 \in V.\]
 executions: as for I/O-automata: sequence of states and interface actions

finite or infinite

\[v_0a_1b_1v_1a_2b_2 \ldots v_r \]
\[v_0a_1b_1v_1a_2b_2 \ldots \]

- as specified by the automaton
 * \(v_0 \): initial value of the var type
 * \((v_k, a_{k+1}, b_{k+1}v_{k+1} \) satisfy the functions of the var type:

\[(b_{k+1}, v_{k+1}) = f(a_{k+1}, v_k) \]

traces: “interface” behavior: ignore the states, consider only the operations
Composition

- straightforward definition (interleaving)
- a countable collection \(\{ T_i \}_{i \in I} \): compatible, if the sets of invocations are disjoint, same for the responses

Definition 3. [Composition of variable types] Given \(\{ T_i \}_{i \in I} \) compatible. Then the composition \(T = \prod_{i \in I} T_i \) is defined by (as expected):

- \(V = \) cartesian product, initial value \(v_0 \) accordingly
- sets of invocations (resp. responses) is the —disjoint— union of the invocations (resp. responses) of the \(T_i \).
- effect-function: pointwise (but interleaving): assume, \(a \) is an invocation of \(i \), then \(f(a, w) \) is given by: apply \(f \) to the \(i \)th component of \(w \) \(\Rightarrow \) yields \((b, v) \), then set \(i \)th component of \(w \) to \(v \)

\(^9\)No harm=synchronization done —except human confusion— if one’s var’s invocation matches another var’s response.
<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Then</td>
</tr>
</tbody>
</table>

Asynchronous Shared Memory Model
Complexity measures

- **time** complexity measure
 - special case of the definition of I/O automata
 - per task C': upper bound $l \Rightarrow$ upper bound for time between successive chances by task C' to perform a task
 - time until some event in $\pi = \supremum$ of times assignable to π respecting the upper bounds; likewise time between events
 - not measured: “contention” time

- other potential (static) measures: number of shared vars, size of their value sets
Failures, randomization

- failures
 - remember: failures in synchronous network model
 * process failures: stopping, Byzantine
 * link failures: message loss
 * channels with “failures” in the asynchronous network model: losing, duplicating, reordering, (finite) duplication
 - just use the definition for I/O-automata:
 * probabilistic: transitions of the form (s, π, P)
 * non-deterministic: transitions of the form (s, π, S).
Literatur