
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Martin Steffen, Immo Grabe

Verteilte Algorithmen
Wintersemester 2003/04 29. Oktober 2003Serie 2

Thema : Leader Election (Aufgaben mit Lösungshinweisen)

Ausgabetermin: 29. Oktober 2003

Abgabe: 10. November 2003

Achtung: in der kommenden Woche ist so gut wie jeder vom Lehrstuhl auf einer Konferenz.
Demzufolge ist die Abgabe des Zettels den Montag die Woche drauf.

Aufgabe 1 (Time Slice (3 Punkte)) Geben Sie den Code für den TimeSlice-Algorithmus
an (Aufgabe 3.10).

Solution: The time slice algorithm for leader election in a uni-directional, synchronous ring
of known size is given informally at page 35 of [?]. It’s idea is rather simple and exploits the
fact that the total order has a known1 potential minimum element, namely 0. The algorithms
proceeds in phases, where each phase is exclusively reserved to circulate a particular id once
around the ring. In phase 0, it’s the turn of process with id 0, if it exists, to initiate the round
trip. After n rounds, it would notice that the token arrives back, and it can announce itself
as leader. If process 0 does not exist, process with id 1 has its chance, etc.

1As opposed to some minimum unknown element which always exists in a finite, total order given by the
UID.



Serie 2 (+ Lösungshinweise) 29. Oktober 2003

messages : { ping}

// --- state --

u = uid : UID

phase = 0 : int

const N : int // known size of the network

round = 0 : int // counter for round

status = unknown : { unknown , leader , nonleader };

// message generation

send the current value of send to i+1 // ring - topology

// transition function

send := null; // clear channel

v = incoming message ; // can be ⊥
case (round , phase)

(0, uid ) -> if status = unknown // I’ll have one try

then send := ping; // if no one else

round := round +1; // has been elected yet

(N,_) ->

case (v,phase ) of

(ping ,uid ) -> status := leader

(⊥,_) -> status := non -leader // I had my chance

(ping ,_) -> raise error // must not happen

round := 0; // reset round and

phase := phase + 1; // enter next phase

(_) ->

case (v) of

ping -> status := non -leader

⊥ -> skip

round := round +1

send := v

Remember the synchronous execution model. Initually, the system starts with all channels
empty in a state, given by the initial values of all variables. In our case, we start in round 0
and in phase 0. After that, the regular behavior of the rounds starts with round 1.2

c0m1c1m2c2 . . .

Since we have no lossy channels currently, we do not need two separate states for the buffer,
one of the original content and one where some of the messages are lost. The message
generation is rather simple. As usual it just “pumps” the content of specficied variables into
the channel. In our case, it’s the variable send.3

Remarks: the classical stumbling stone: one forgets to stop the phases, i.e., one forgets
that a process must recognize when it becomes a non-leader! The above code sends just one
ping. One could also use the unique identifier. This would simplify some of the cases.

Aufgabe 2 (Verbesserter OptFloodMax (4 Punkte)) Consider the “further optimized”
version of OptFloodMax described in Section 4.1.3, which prevents processes from sending
max-uid-information to processes from which they have previously received such messages.

2Round 0 in the model is not a “full” round as the message generation and consumption is missing.
3The code given could be slightly optimized. It “misses a beat” initially, since by the initial states, no

message is generated, while one could probably start with ping right away. The same stutter seems to occur
when a phase is completed; also then, there is a round with no messages. This means the variable round is
not in sync with the actual rounds. Probably this could be made nicer

2



Serie 2 (+ Lösungshinweise) 29. Oktober 2003

1. Give the code for this algorithm.

2. Prove the correctness of your algorithm by relating it to OptFloodMax, using the same
sort of simulation strategy used in the proof of correctness for OptFloodMax (i.e., in the
proof of Theorem 4.2).

(Aufgabe 4.4)

Solution: OptFloodMax is an improved version of the simple FloodMax algorithm for
leader election in a general, synchronous network. The trivial flooding algorithm is rather
brute force. It just floods the network with the maximum value encountered so far. Since
the diameter of the network is known, each process just stops after pumping its knowledge
about the maximum into the network enough times — keeping a record of the maximum
encountered so far.

The improved version of the algorithm (OptFloodMax ) [?, p. 54] uses the following simple
observation: only news should be propagated since it makes no sense in repeating oneself in
sending out the same values over and over again. In other words, the locally known maximum
is sent only in a round, when the incoming information updates this value.

Part 1 of the exercise, where one adds another bit of optimization, is rather trivial. One
can use the code of the optimized flooding algorithm almost completely; only the set of
channels where to send the outgoing messages is redefined: it makes no sense to send the
newly learn maximum back to those processes from which one has learnt it. Note that in one
round, the might be more than just one incoming channel from which a process receives the
new optimum.

Process (i)

messages : { ping}

// --- state --

id = uid : UID

max -uid = id : UID // initually , I’m the largest , as far as I know

new -info = true : boolean

round = 0 : int // counter for round

status = unknown : { unknown , leader , non -leader };

// message generation

if rounds < diam and new -info = true

then send max -uid to all {j ∈ out -nbrs | incoming uid from j 6= max (u) }

// transition function

round := round + 1;

let u be the set of uid ’s arriving from in-nbr

if max(u) > max -id

then new -info := true else new -info := false

max -uid := max (max -uid , u); // state change only if new -info = true

if rounds = diam

then if max -id = id

then status := leader

else status := non -leader

For part (2), we have to give some proof, basically adapting the proof for OptFloodMax.
The assertional proof uses two auxiliary assertions, where the second one uses the simulation

technique. Basically this allows to

1.

3



Serie 2 (+ Lösungshinweise) 29. Oktober 2003

2.

Aufgabe 3 (SyncBFSMax (6 Punkte)) Consider the optimized version of SynchBFS de-
scribed in Section 4.2.2, which prevents processes from sending search messages to processes
from which they have previously received such messages.

1. Give code for this algorithm.

2. Prove the correctness of your algorithm by relating it to SynchBFS, using the same sort
of simulation strategy used in the proof of correctness for OptFloodMax (i.e., in the
proof of Theorem 4.2).

(Aufgabe 4.6)

Solution: This algorithm is an improvement of the synchronous breadth-first search al-
gorithm (SynchBFS ). Let’s first recapitulate the basic algorithm (cf. [?, Section 4.2]. The
algorithm assumes a strongly connected process graph with an explicit root node, which is
intended as the root of the breadth-first search tree.

The algorithm works conceptually similar to the ordinary, sequential breadth-first traversal
of a graph, i.e., it uses markings to distinguish visited and not-yet-visited nodes. 4 Initially,
the root node is marked, the rest of the graph unmarked. The code for the basic algorithm
is shown in Figure ??

The algorithms is stupid insofar, that a freshly discovered nodes indiscrimitately sends
search messages to all its neighbors. Better is to send messages in a more directed manner
“outwards”, away from the root node. More precisely, there is no sense in sending messages
back to “discoveres”5 The reason is that a seach message can originate only from a process
which is marked (and, in the previous round, just discovered). A marked process, however,
does not react to any message. In the terminology of Section 2.1, the state of a marked
process with just-discovered = false is a halting state.

The optimization leads to the code of Figure ??. The only difference is in the message
generating function: the process does not use the static out-nbgr, i.e., the list of outgoing
neighbors to send the exploration messages, but only those from its neighbors from which, in
the previous round,6 there had been no incoming messages.

Conceptually, there are three possible stati, which are represented in the optimized version
as three colors: white for not yet touched, grey for just discovered, and back for finished i.e.,
for discoverd but not right now.

For the proof, it was required to do a simulation proof connecting the optimized version
with the original one. As inspiration, one could have a look at the way, the optimized flooding
algorithm was related to the plain one. In the way presented in [?] so far, the simulation proof
method can be seen as a special form of assertional invariant proof. What make the situation
slightly dubious here is that the algorithms are nondeterministic! At least if we take the BFS
tree into account! Anyway, here we go.

Assertion (1): For both algorithms, the following holds: If statusi = grey and
j ∈ ini, the statusj = black, for all rounds r.

4The presentation of the sequental algorithm in for instance [?] uses three different marks: white, grey, and
black. Those are also visible in the algorithm here:

5Let’s call the set of discovers of a node those processes that sends messages to the process which lead to
the step from the unmkarked to marked status.

6In the model, message generation by convention is the first thing to do in a round.

4



Serie 2 (+ Lösungshinweise) 29. Oktober 2003

Process (i:id)

messages : search of id

// --- state --

parent = ⊥ : process

leader : process = i // initially , each one is his own leader

mark = if (i = i0)

then marked

else unmarked : { marked , unmarked }

just -discovered = if (i = i0) then true else false : bool

in = ∅ : set of ids

// message generation

if just -discovered

then search (i) to out -nbrs

else skip

// transition function

in = incoming search messages ;

just -discovered := false;

case mark of

unmarked -> just -discovered := true ; // triggers further messages

mark := marked ;

parent := pick(in); // choose a parent

marked -> skip

Figure 1: Breadth first search

5



Serie 2 (+ Lösungshinweise) 29. Oktober 2003

Process (i:id)

messages : search of id

// --- state --

parent = ⊥ : process

mark = if (i = i0) // i_0 = root

then grey

else white : { white , grey , black }

in = ∅ : set of ids

// message generation

if mark = grey

then send search (i) to (out -nbrs \ in) // optimization

else skip

// transition function

in = incoming search messages ;

case (mark ,in) of

(grey , _) ->

mark := black

(white , ∅) -> skip // no input , no reaction

(white , _) ->

mark := grey // triggers messages

parent := pick(in); // choose a parent

(black ,_) -> skip

Figure 2: Breadth first search (optimized)

6



Serie 2 (+ Lösungshinweise) 29. Oktober 2003

Proof: By induction on the number of rounds and for both versions of the program, the
argument is the same. In the initial state, i.e., for r = 0, the assertion holds vacuously, as
only the root node is grey and for the root the set of incoming ids is empty.

Now, for the inductive step consider the following: from the transition function for the
message generation at the beginning of round r + 1, only grey nodes send messages to their
neighbors; both versions of the BFS differ in this step, but agree in no non-grey nodes ever
send messages. Now the grey nodes in round r + 1 are, again by looking at the code, those
which had beed white before and which receive at least one message in r + 1. Converting the
perspective from sender to receiver, in the transition function in round r + 1, only messages
originating from grey nodes (at round r) are stored in in. Additionally, all grey nodes of
round r are painted black in round r + 1, from which the assertion follows.

We can use this observation for the simulation.

Assertion: for any round r, the values of mark and parent correspond7

Proof: Procceed by induction on the number of rounds r. For r = 0, i.e., for the initial
states, the two algorithms are obviously in relation.

Now, assume that up to completion of r the assumption holds. The next thing to happen
is the message generation, and afterwards the state transition of round r + 1.

For message generation, the difference is that a grey nodes of the original algorithm sends
to all its outgoing neighbors, while the optimized version only to those not in in.

So all nodes not the at the receiving end of a communication with a grey node will still
be identical at the end of round r + 1. So let j be such a neighbor of a grey node i. As
mentioned, the only case where the algorithms differs is when j ∈ ini, so let us concentrate
on processes j this case. By Assertion (1), j is black.8 Now the transition of round r + 1 for
the black node j does nothing, preserving the invariant.

7for the parent pointer, one has to assume that the nondeterministic choice picts the same.
8The values so far are still meant at the end of round r.

7


