
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Martin Steffen, Immo Grabe

Verteilte Algorithmen
Wintersemester 2003/04 12. November 2003Serie 3

Thema : Spannbaum (Aufgaben mit Lösungshinweisen)

Ausgabetermin: 12. November 2003

Abgabe: 17. November 2003

Aufgabe 1 (Bellman-Ford (4 Punkte)) Bearbeiten Sie Aufgabe 4.14 aus [1], d.h., geben
sie den Code für Bellman-Ford an und beweisen Sie die Korrektheit. Benutzen und Beweisen
Sie dabei die Invariante aus der Vorlesung (Seite 62 unten).

Aufgabe 2 (SynchGHS (4 Punkte)) Geben sie den Code für den Algorithmus von Gal-
lager, Hamblet, and Spira (SyncGHS) an. (Aufgabe 4.15)

Solution: The synchronous version of the algorithm is described in [1, Section 4.4, p. 66];
the original algorithm is asynchronous. The original citation is [?].

As a recap concerning the synchronous model and its executions: we start in some initial
state (that’s round 0, so to say) and from then on, the rounds are message assignment fol-
lowed by a state assigment. The message assigments are produced by the message generation
function of the processes; afterwards (in one round), the process reads the vector of incoming
messages along all its neighbors and produces a state change.

Now to the algorithm, as far as I remember. Given a connected, undirected, weighted
process graph, the goal is to determine a minimum spanning tree. The underlying idea of the
algorithm is the same as known from corresponding sequential MST-algorithms. Starting from
an empty subgraph, the algorithm adds one edge after the other, maintaining a subset of the/a
spanning tree, until the “spanning forest” connects the full graph. Thus, the growing forest
partions the graph at each state in connected components,1 the single trees. Starting with the
empty subgraph, i.e., n single-node components, the inductive step adds one edge combining
exactly two components. Joining two tree components mainains acyclity, and to preserve also
the minimality-requirement, the trick, given one components, is to pick a minimal edge which
connects the component with another.2 The choice of component in each step distinguishes
the main to sequential variants of the algorithm (Prim’s and Kruskal’s version).

Here, things get more complex, since the algorithm is intended to run in parallel. This,
especially, refers to mentioned main step joining trees. While, depending on the variant, the

1The trees are undirected as the graph.
2In the proof as presented in [?], edges with this property which can be added maintaining the invariant,

are called safe edges.

Serie 3 (+ Lösungshinweise) 12. November 2003

sequential algorithm treats one component at a time, in the parallel version, at least one tries
to let the trees grow in parallel. That this works requires that the two indendantly acting
components take the same choices, and this is guaranteed if the weights are unique.3

Let’s first consider how a tree grows larger. Globally, the tree must find out the edge
connecting to another tree which is of minimal weight; this edge is unique by assumption.
This cannot be locally determined, but all nodes in the tree must contribute and the minimum
is the collected in a convergecast process. Also locally, a node must find out which of its graph
neighbors belong to its own same tree. To be able to do so, each node must have knowledge
to which clique it currently belongs. For this purpose, one node in the tree, the leader, is used
to represent the tree (and furthermore is useful for distributing and collecting information.)

Once a component has determined the unique edge to add, the two trees are combined.
This means, a new leader is determined and the new leader must be broadcast to all nodes.

The algorithm so far seem simpler than it is. For instance it’s not case that only pairs
of components merge. Component T1 determines that it connects to T2 and T2, at the same
time determines T3. Second of all, even in the synchronous execution model, the same time
does not immeadiately mean that, for instance, both parts come to the decision at the same
time. Furthermore we have to be very careful, in this context, that at each round at most

one message can be sent in each link. For instance, a node cannot respond to a search-
message handed down from one’s own leader and to a test-message from a neighbor tree in
the same round. If we want to avoid buffering in the process —which we want— we need to
sequentialize the phases appropriately.

The tree is undirected, by which we mean that each node in the tree has not only a parent
pointer, as given by the (synchronous breadth-first) spanning tree algorithm, but also a a
pointer to the sons, which is provided by the echoeing convergecast which determines the
minimum

If a process i is non-leader and receives a search-message, then it must find out for all his
non-tree neighbors whether he’s belonging to the same component or not. Furthermore,
it must pass-on the search-message further along the tree-component. The test-message
is directly acknowledged, and this establishement takes thus takes 2 rounds. Of course a
component does not send all its test-messages at the same time.

3One can easily prove that under this additional assumption, the MST is unique. Therefore there will not
be “contradicting” choices when joining two cliques, which could lead to cycles. This is not to that two cliques
connect each other at the same point in time in a bidirectional way.

2

Serie 3 (+ Lösungshinweise) 12. November 2003

// GHS (Gallager/Humblet/Spira), synchronous version

message alphabet M:

test: UID

test_ack : {inside , outside }

search : UID // leader broadcast his id in the tree

states i:

uid : UID // as usual , unique identifier , ordered

level : Nat = 0 // counts number of ‘‘mergings ’’

treeedges : = ∅ // ⊆ nbgrs = in -nbrs = out -nbrs

leader : bool = true // initially , every one is his own leader

parent : Id = ⊥
sons : Set of Id = ∅ // at the end of each level:

// parent of all sons = process itself

// and vice version: process is contained in

// the sons of the parent (except leader)

msgsi:

// The following message generation uses disjoint edge sets; furthermore

// it can be shown that in each round , at most one of the cases produces

// a non -empty message , and this globally.

send to_outside to all j ∈ nbrs \ (sons ∪ parent);

send to_sons to all j ∈ sons // initially , only the leader does so

trans i:

if stage = exploring

in := incoming search (id) message ; // there can be at most one along the tree

if in 6= ⊥
then

leader := id; // now I know my leader = id of my root

to_sons := search (id); // hand it down in the message phase

fi

k := k + 1; // we do some flooding

if k = f(level) // if f(level) is big enough , then to_sons = ⊥
then stage := lookaround

if stage = lookaround

then

k:=0; // reset the level -internal counter

to_outside := test(leader); // the partner can deduce my id

stage = lookaround2

fi

if stage = lookaround2

then

to_outside [j] = ⊥, for all j // reset

for each test(leader ’) from nbrsj

if leader ’ 6= leader

then to_outside [j] = inside ;

else to_outside [j] = outside ; // in the sync . setting , one could remain silent

stage := build_min ;

k := 0 // just reset again

if stage = build_min // we pump the min upwards , towards the root = leader

then

if k = 0 // only for k=0, information comes from outside

then min := min {weights of edges from where a ‘‘outside ’’ has been sent};

else min := min {min , converge (min)};

fi

k := k+1;

if k = f(level)

then k := 0 // reset

stage := add_edge ; // now each leader knows the minumum edge

// but the edge is not known to the process

// which it connects to the outside

3

Serie 3 (+ Lösungshinweise) 12. November 2003

fi

if stage = add_edge // tell the new edge , or finish

then

if leader and max = ⊥
then // no more edge can be added => finito

stage := finalize

elseif leader and max 6= ⊥
then to_sons := (i,j)

else // non -leader

to_sons := edge(i,j), where edge(i,j) is from in -nbrs

if id = i

then new_edge := (i,j)

fi

k := k+1;

if k = f(level)

then stage = merge

else

fi

if stage = merge // now: we need to add this information and

// to merge the trees . Each clique may add

// a different edge , this means , temporarily

// the sub - structure is directed.

//

//

//

// if stage = exploring

// leader searchs the component environment

// send test(leader) to all j ∈ nbgr \ nbrst

Aufgabe 3 (Convergecast (4 Punkte)) Geben Sie den Code für den Convergecast Algo-
rithmus an, der am Ende von Abschnitt 4.4 skizziert wird. (Aufgabe 4.20).

References

[1] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.

4

