
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Martin Steffen, Immo Grabe

Verteilte Algorithmen
Wintersemester 2003/04 17. November 2003

Serie 4

Thema : Consensus mit Fehlern/Random Attack (Aufgaben mit
Lösungshinweisen)

Ausgabetermin: 17. November 2003

Abgabe: 24. November 2003

Aufgabe 1 (6 Punkte) Beweisen Sie Lemmata 5.2 und 5.3 aus [?] (Aufgabe 5.5 + 5.6).

Lösung:

Proof of Lemma 5.2/Aufgabe 1(a): For a contradiction assume that there exists two
different processes i and j and a round k such that1

level(i, k) − level(j, k) ≥ 2

Let’s set m = level(i, k) and n = level(j, k). The definition of the level function immediately
gives that k > 0 and furthermore (j, 0) ≤ (i, k), i.e., intuitively, there must have been some
“communication” from j to i. So with i, j, and k given, we can write the assumption we
wish to lead to a contradiction more shortly as

m > 1 + n . (1)

Now consider for process i the knowledge it has about the state of j, i.e. the value of lj (or

more precisely li,kj), as given in the definition:

li,kj , max{level(j, k′) | (j, k′) ≤γ (i, k)} .

Intuitively, this value (= n′) denotes “the latest news” of process i about j. The following
inequation is easy to show (cf. Lemma ??):

n′ ≤ n . (2)

1Wlog, we can pick i to have the larger level, of course.

Serie 4 (+ Lösungshinweise) 17. November 2003

According to the definition of the level of a process as the minimum, we further get

m ≤ 1 + n′ , (3)

and thus we get with transitivity m ≤ 1+n, contradicting our assumption (??) from above.

Lemma 1 For all processes i and j (assumed to be different) and rounds k, such that the
condition of case (3) of the level definition in [?] are satisfied, we are given:

li,kj ≤ level(j, k) (4)

Proof: First note that (j, k′) ≤ (i, k) implies k′ < k when j 6= i, and furthermore that
(i, k1) ≤ (i, k2), when k1 ≤ k2.

Again we can argue by contradiction. Assume, contrary to Equation (??), that

li,kj = max{level(j, k′) | (j, k′) ≤γ (i, k)} > level(j, k) .

As stated, k′ < k for all the k′s quantified over in the maximum, each single level(j, k′) ≤
level(j, k). in the max, we know that level(The definition of level(j, k), however, expands
to 1 + min{li | i 6= j}

Lemma 2 (Monoticity) k1 ≤ k2 implies level(i, k1) ≤ level(i, k2).

Proof: Basically by transitivity of ≤γ .
In a bit more detail, let’s first argue, that (in the situation of case 3 of the definition

of level), lk1

j ≤ lk2

j , whenever k1 ≤ k2. The case when k1 = k2 is immediate. If otherwise
k1 < k2, then clearly

{levelγ(j, k
′) | (j, k′) ≤ (i, k1)} ⊆ {levelγ(j, k

′) | (j, k′) ≤ (i, k2)}

by transitivity of the ≤γ-relation. Hence

li,k1

j ≤ li,k2

j ,

and this directly gives

levelγ(i, k1) ≤ levelγ(i, k2) ,

as required.
The remaining cases 1) and 2) of the level -definition are simpler.

2

Serie 4 (+ Lösungshinweise) 17. November 2003

Proof of Lemma 5.3/Aufgabe 1(b): In this lemma we are given perfect communica-
tion, i.e., (i, j, k) ∈ γ for all i, j, and k.

In addition to the statement of the lemma, we prove by simultaneous induction on k,
the following two assertions

li,kj = k − 1 for k > 0 (5)

level(i, k) = k . (6)

For k = 0, the property holds directly by definition of level . For k > 0, first note that
case 2) of the level-definition does not apply, hence we need to deal with case 3), only. By
the assumption of perfect communication, the definition of li,kj simplifies the following way

li,kj = max{level(j, k′) | (j, k′) ≤γ (i, k)} = by perfect communication, and i 6= j
max{level(j, k′) | k′ < k} = by monontonicity

level(j, k − 1) = by induction
k − 1 .

Thus, the minimum operator for level(i, k) is superfluous, and we directly get:

level(i, k) = k − 1 .

Aufgabe 2 (RandomAttack(4 Punkte)) Bearbeiten Sie Übung 5.7 (= Teile aus Theo-
rem 5.4) aus [?].

Lösung: The RandomAttack -algorithm, a solution to the stochastic version of the coor-
dinated attack problem, is given on page 90 and following. We first spell the requested
properties. The first states, that the algorithm correctly implements (in a distributed way)
the inductive level definition

Lemma 3 (Levels)

levelγ(i, k) = level [i]ki ,

for all good communication patterns γ, for all 0 ≤ k ≤ r, and for all processes i after
k-rounds.

Proof: We start with the code and consider more the value levelki [j], when j 6= i, i.e., the
opinion of process i concerning the level for an arbitrary different process j in round k. In
the (interesting) case where this value is not equal ⊥, it must have been set by process i
after having received it via the corresponding tupel L which are exchange each round (if
not lost). Anyway, since the communication is lossy, the information might not directly be

3

Serie 4 (+ Lösungshinweise) 17. November 2003

received from j, nor might it immediately be propagated from j to i, but it must originate

in j. More concretely, there is a path of the following form2

j
k0→ h1

k1→ h2 . . . hn
kn=k
→ i ,

with all process identifiers different (i.e., there’s indeed a round of communication invoved),
and furthermore

level
j
k0−1

[j] = level ik[j] .

In other words, the left-hand side of the equation point to the round where the current
value of the right-hand side originated.3

The definition of ≤γ (using the base case for communication and transitivity) yields:

(j, k0 − 1) ≤γ (i, k) .

Let us use S as abbreviation for the set

{(j′, k′)) | (j′, k′) ≤γ (i, k)} .

Since level ik[j] = level
j
k0−1

[j], induction yields level
j
k0−1

[j] = levelγ(j, k0 − 1) ∈ S, and
therefore

level ik[j] ≤ lj = max(S) (7)

by definition of lj as the maximum
On the other hand, since there is (at least one) a path from j′ to i, the knowledge of

process i about j satisfies

level ik[j] ≥ lj = max(S) (8)

Now finally, the code for the array in position i is defined the same way as in the inductive
definition of the function, namely by adding one to the minimum to the “knowledge of the
others.” Hence

levelγ(i, k) = level ik[i] ,

as required.

Lemma 4 (Initialization) After k rounds, if level [i]i ≥ 1, then key i is defined and val i[j]
is defined for all j. Moreover, these values are equal to the actual key chosen by process 1
and the actual initial values, respectively.

2We write i1
k
→ i2 more suggestively for (i1, i2, k) ∈ γ.

3The channels are lossy, but they do not alter messages.

4

Serie 4 (+ Lösungshinweise) 17. November 2003

Proof: In the code, each process i starts with level 0 for itself, i.e., initially

level i[i] = 0 .

Aufgabe 3 (3 Punkte) Schließlich und endlich: Bearbeiten Sie Übung 5.8 aus immer
noch [?].

Lösung:

1. Falls ein Prozess mit 0 startet, so ist 0 die einzig mögliche Entscheidung

2. Für jeden Gegner B, für den alles initialen Werte auf 1 sind gilt

PRB[all process decide 1] ≥ lε ,

wobei l das minimale Level aller Prozesse zur Zeit r in B ist.

Proof: For the first point, where (at least) one process starts with 0 as initial value.
Now, a decision 1 being taken implies that key 6= ⊥ for all processes. This means that
each proceass knows each others initial values since they are passed around together with
the key . Furthermore,, for a decision for 1, the values for all processes (as stored in the
corresponding V -arrays) must be 1, which is a contradiction.

In the second part, let l be the mimumum of all levels in round r, which we assume to
be fixed for the argument. Anyway, “stochastic” item which influences the decision, one
l is fixed, is the key which is chosen randomly from the interval [1, r], each value with a
probability of 1/r.

Now, in the algorithm, a uniform decision for 1 is taken, when

key ≤ l = min{li}

This happens in l of r cases, i.e.,

PRB[all processes decide 1] ≥
l

r
= lε .

One could additionally make an argument for l = 0.

The value of key is randomly chosen by the process. The adversary choses the initial
value for the consensus. There are two arrays for each process, one for the levels and the
knowledge of the process about the other processes’ levels. The other array val is the
knowledge about the processes (in-)decision. Those two vectors (together with the key) are
send around each round (or lost). Not that the key is generated only once (by process 1 in
the first round, and then propagated. The

5

