
Serie 6 (+ Lösungshinweise) 1. Dezember 2003

Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Martin Steffen, Immo Grabe

Verteilte Algorithmen
Wintersemester 2003/04 1. Dezember 2003Serie 6

Thema : — Mittsemestertest! — (Aufgaben mit Lösungshinweisen)

Ausgabetermin: 1. Dezember 2003

Abgabe: 9. Dezember 2003

Mittsemestertest: Diese Aufgabenserie ist von jedem
allein zu bearbeiten! Die Aufgaben sind diesemal etwas bre-
iter gestreut, d.h., auch 2 Aufgaben aus vorangegangenen
Kapiteln sind mit aufgenommen. Bitte beachten Sie auch
den Abgabetermin. Viel Erfolg!

Der Zettel behandelt verteilte Einigung, speziell die randomisierte Variante, und zwar in
synchronen Netzen mit unzuverlässiger Kommunikation (Nachrichtenverlust).

Aufgabe 1 (Kantengewichte und Kantenidentifikatoren (4 Punkte)) Bearbeiten Sie
Aufgabe 4.18 aus [?].

Aufgabe 2 (Byzantinismus (6 Punkte)) Bearbeiten Sie Aufgabe 6.21 über EIGByz aus
[?].

Solution: The exersize is indended to get a feeling about how the EIG-algorithm for Byzan-
tine failures works by playing around with scenarios, where the number of failed processors
is large enough to undermine consensus.

1. 7 nodes, 2 failed processors, 2 rounds: Since the algorithm’s decision is based on EIG-

trees, we firt recapitulate this structure to fill it with values which lead to disagreement.

As usual for consensus algorithms, the basic idea is to send around values often enough
to come to some conclusion based on majority. Since there might be Byzantine process
failures, it is not enough to take the value received by a process “for the word of it” but
one needs to hear a “second opinion” (and a third . . . ) about the value of a process. In
other words, each process not just remembers the value heard directly from a process,
but also what another process heared the value would be, and this level of indirection
must be deep enough to filter out the cheater. What makes it hard is, that a lyar may
lie not only about his own value, but he can also lie about which value he knows about
others, which creates confusions. This need of higher-order indirect information about

1



Serie 6 (+ Lösungshinweise) 1. Dezember 2003

values, which forms the core of the exponential information gathering idea, makes the
difference between the consensus problem in the presence of stopping failures and the
situation here. When only stopping failures occur, needs no higher levels of indirection.1

May it as it is, the information of one player “process i said value v”, “process j said,
that process k said that value v′” . . . is stored in a hierarchical data structure, the
EIG-tree, whose depth is given by the number of rounds. In this exercise, we play
f = 2 rounds which gives f + 1 = 3 level.2 Each level in the tree, counted from the
root, corresponds to the level of indirection of the information, so nodes, say, 2 and 23,
correspond to “first-hand information” and “second-hand information” of some process
about node 2. In the first round, located at level one in the tree, 2 directly gave its
value, and in the second round resp. at the second tree level, 3 relayed the information
that 2 possess some given value.

In our example, each tree —there are 7— consists of 7 nodes in the first level each of
which possess 6 decendants in the next level, which form the leaves. To systematically
approach construct a disagreement situation, let us consider the consequences of the 5
honest vs. 2 lying processes situation in terms of the given algorithm. If a sound process
broadcast some value, say 0 in the first round, then only two of the values may arrive
forged as second-level information at the processes. This means, at the second level of
each tree, the leaves contain at least 4 original values about that process, which makes
a majority of the 6 leaves.

According to the decision procedure of the EIGByz-algorithm and the decision tree, it
means that the father-node of the 6 leaves is labelled with an accurate opinion about
the picked process. Taking the 5 nodes of level 1, corresponding to sound processes,
this means that in the decision tree3 at level one there a 5 correct labels. And this for
all sound processes.

To lead this to a contradiction, we therefore need at least two different start values. say
true and false, in 3 : 2-ratio.4 To be concrete, let the processes 1, . . . , 5 be sound and
6 and 7 the cheaters and let furthermore false be the initial value of 1, 2, and 3, and 5
and 6 are initially true.

As mentioned, this fixes 5 values at level 1 of the trees of all non-cheaters to the array:

for all Ti with i = 1, . . . , 5: false , false , false, true , true, ?, ? (1)

Now we need the cheaters to fill in the question marks of two different non-cheaters in
such a way that they decide at their respecive root node in a different way.

Consider, for instance, the cheater 6, respecively the tree node 6 at level 1 in the trees
of the honest processes. In order than some of the sound processes considers 6 to have
value false instead of the ?, there must be a majority of leaves that has heared about

1Since messages can be lost, one cannot directly base the decision on what one heard from another process,
because one could have heard nothing, while other players could have received a dissenting vote from the
failing (=stopping) processes and thus would fall back to the default vote. That was the idea of the various
algorithms for stopping failures.

2We start with “zero-knowledge” before the first round.
3of course again for a sound process, only
4One could have guessed that from the start, too.

2



Serie 6 (+ Lösungshinweise) 1. Dezember 2003

true. Indeed, three nodes suffice, since the cheater 7 may lie about what he had heard
about 6, filling in a 4th false .

As, independant of the node 67, there are already 3 false ’s in the 6 leaves, there can’t
be a majority of true for all sound trees, independant of any further cheating of 7, the
dissenting vote can only be the default value. To achieve this, at least 3 sons of tree
node 6 are marked with true. This means, 6 must send

To sum up concretly: The cheaters and non-cheater processes are numbered as above
and possess the start values of Equation (??). The disagreement is constructed by
having conflict between 1 and 2. Cheater 6 sends false to 1, 2, 3 and true to the rest in
the first round; in the second round 7 sends to 1 that it had heared that 6 is false . This
gives for the tree in process 1 that

61 false

62 false

63 false

64 true

65 true

(66) −
67 false

Propagating this majority to the father 6 yields a forth false at level 1, and process 1
decides to false.

For process 2, the situation is harder since we need not just one false but we must avoid
to assing another false to one of the ?, i.e., for node 6 and 7. The situation for the
leaves 6j is already quite fixed, and the only place we still have freedom is the underline
value for 67, which blocks the majority and leads to the default decision at node 6 in
the tree for process 2. Remains the subtree for 7, where we also need to prevent a false-
labelling. That’s simple: 7 just sends true in the first round, and the other remaining
cheater correctly states (for instance) that he had heard true from 7.5

61 false

62 false

63 false

64 true

65 true

(66) −
67 true

71 true

72 true

73 true

74 true

75 true

76 true

(77) −

Aufgabe 3 (Ablauf eines I/O Automaten (4 Punkte)) Bearbeiten Sie Aufgabe 8.4 aus
[?].

Solution: The excercise is to describe the (fair) traces of an automaton and especially
the traces of a product automaton.

5As we have made no assumptions so far on the behavor of 7 except that it sends a value of “6 is false” to
1 and “6 is true” to 2 in the second round, we have much freedom here.

3



Serie 6 (+ Lösungshinweise) 1. Dezember 2003

Figure 1: Automata A and B

• Behavior of A: The automaton has only two states, and the only thing it can do is do
a go step. Thus [[A]]trace = {λ, go}. The fact that A, as all I/O automata, is input-
enabled, has no effect, since there are no input actions at all. For A’s fair traces we
have to take care for the fairness condition of finite traces, namely that actions from
each the task are not enabled. In our case, go must not be enabled, which removes the
empty trace as unfair finite trace, yielding [[A]]fair = {go}.

• Behavior of B: This gets a bit more tricky.

– Let’s start with the ordinary traces. In the traces, the state (containing the natural
number) are not recorded, and neither are the internal increment actions. One
could write it as follows:

go ack∗ go≤ω + λ .

In the regular expression, go≤ω stands for go∗ + goω.

– For the fair traces, we first observe that go is an input, and thus beyond control
of the automaton.6 This means there won’t be an requirements concerning the
go-action.

The tasks of B separate between the internal increment action inc and the ack

action. Consider an infinite execution of B. inc≤ω

[[B]]fair = λ + go ack∗go≤ω

• A × B: For the product, we must combine the remove the go-inputs of B from the
inputs, nevertheless, go is still output, due to A. Furthermore, B’s output ack is
common output. Note thet A × B has therefore empty input, it is not triggered from
outside. Furthermore, B does not received infinite input as before, when it was alone,
but only the only go-action that its partner sends.

– For the traces, this gives

[[A × B]]trace = λ + goack∗

– The fairness requirement resolve in the start location s, on, i) the systematic pref-
erence of the internal increment operation: since go is constantly enabled, it must
be taken at some point. This gives as possible fair traces:

[[A × B]]fair = go ack∗

Aufgabe 4 (Traces und fair traces (6 Punkte)) Bearbeiten Sie Aufgabe 8.12 aus [?].

Solution: First we restate the properties:

6As required from I/O-automata, B is input-enabled wrt. go. Furthermore, of course, go is not mentioned
in the task-part of the automaton.

4



Lemma 1 (Safety) Let P a safety property and A an I/O-automaton. Then the following
3 statements are equal:

1. [[A]]trace ⊆ [[P ]]trace

2. [[A]]fair ⊆ [[P ]]trace

3. [[A]]fin ⊆ [[P ]]trace

Proof: Since obviously each finite and each fair trace is, a fortiori, a trace, two implications,
(1) → (2) and (1) → (3), are straightforward by transitivity of set inclusion. Let’s concentrate
on the rest, where we show two to close the circle.7

(3) → (1): So assume (3) and additionally α ∈ [[A]]trace . If α is finite, we are done by assump-
tion. If α is infinite, then consider αi, the prefixes of length i of α. All of them are
finite. Furthermore, αi ∈ [[A]]trace for all prefixes,8 which yields α1 ∈ [[P ]]trace , whence,
by limit closure of the safety property P , the result follows.

(2) → (3): This one is a bit more tricky, and we use the fact, that each finite trace of an
automaton can be extended to a fair one (cf. Lemma ??).

So assume (2) and additionally some α ∈ [[A]]fin . By the mentioned Lemma ??, there
exists an extension α′ of α s.t., α′ ∈ [[A]]fair , and thus by assumption, α′ ∈ [[P ]]trace .
Using another closure condition of the safety property P , this time prefix closure, gives
α ∈ [[P ]]trace , as required.

7Some proved the following implications using the contrapositive formulation. We find that slightly less
transparent, but of course the idea is the same.

8The fact, that the traces of an automaton are prefix closed seems trivial, of course, but is a crucial step in
the argument. What’s behind is that, when considered as a trace property, [[A]]trace is a safety property. We
only need prefix closure from that observation here.


