Serie 8 (+ Losungshinweise)

7. Januar 2004

CHRISTIAN-ALBRECHTS-UNIVERSITAT ZU KIEL
Institut fir Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever
Martin Steffen, Immo Grabe

Verteilte Algorithmen

Wintersemester 2003/04 Serie 8

Thema : (Aufgaben mit Losungshinweisen)

Ausgabetermin: 7. Januar 2004
Abgabe: 12. Januar 2004

7. Januar 2004

Aufgabe 1 (Terminierung (6 Punkte)) Terminierungsbeweise erfordern andere Argumente
als die fiir Safety oft angewandten Induktionen iiber die Anzahl der Runden oder die Anzahl
der Schritte. Eine Moglichkeit ist, wohlgeordnete Mengne zu verwendenrt. Eine Wohlordnung
(well-founded set) ist eine Halbordnung, bei der es keine unendlich absteigenende Ketten gibt,

d.h., keine unendliche Folge nqy > no >ng >

e Zeigen Sie, dal das Kreuzprodukt von n Wohlordnungen eine Wohlordnung ist.

e Beweisen Sie, daf der aynchrone LCR-Algorithmus (Le Lann, Chang, Roberts) fiir
Leader-Election im Ring terminiert. Uberlegen Sie sich dazu ein geeignetes Terminierungs-

maf.

Solution:

1. Let’s first define how to lift an ordering to products. Basically, there are two intuitive
ways to do it: lexicographic or pointwise. Both can be defined inductively on the
dimension of the product. Let < be the strict order on the underlying domain.! Then
we can define the strict lexicographic order (A™,<;) as the smallest relation given by:

a<b a</b
—— FIRST —— REST
ad <; bb ad <; ab

Alternatively, we could define the non-strict order <;, adding an axiom e <; €, when
€ is the empty tuple. Anyway, it’s easy to show that <; is reflexive, transive, and

anti-symmetric, using the fact the underlying < is.

Not to the question of infinite descending <;-chains. The base case of n = 1 is im-
mediate, since <; on A! equals <, wich is a well-ordering. For n + 1, assume for a

!For notational simplicity, we assume a uniform product A™; the very same construction works for IL; As,

where each A; is equipped with a well-ordering <; of its own.

Serie 8 (+ Losungshinweise) 7. Januar 2004

contradiction, that there exists an infinite descending chain agdy >; a1dy.... There-
fore there must be an infinite number of applications of FIRST or REST (or both, of
course). That’s impossible, however, since < is a well-ordering by assumption, and <;
is a well-ordering by induction.

We can also lift < pointwise to A™. An inductive definition of <, looks as follows:

a<b a<b a<p b a<p b
FirsT; FIRSTo — REST
ad <, ba ad <, bb ad <, ab

It states that at least one component most properly decrease, maybe more than one.
The argument that <, is again a well-ordering works as for <;, using induction.

2. Both well-orderings can be used to prove termination of the LCR-algorithm. Which
one is appropriate depends on which information about the state of the processes one
measures.

Travel length of token This is the easier termination measure, in the sense that it
works with the point-wise ordering. Each process sends around it’s user id as token
in, say, clock-wise direction around the ring, until it is swallowed by a process with
higher id. We can take the mazimal traveling length for each token as measure,
where we must not forget to count the channel process. Initially we can thus take
as measure vector:?

(2n,2n,... ,2n)

Each send or recieve action decreases exactly one place in the vector (= pointwise).
In case of a receive action, when the received value is swallowed and not relayed,
we can decrease the corresponding value to 0.

Queue lengths Alternatively, one can take a more complex measure, namely the vec-
tor of all queue length for all processes and channels. In this set-up, the point-wise
ordering does not work, because removing a message from one queue puts the
message in another one, whose value thus goes up.

If we order the processes and channels in the order given by the directed graph,
we obain an 2n-tuple. Each time a message is send, it decreases a queue length
in slot, say ¢, and increases it at ¢ + 1. In case the massage it swallowed, it only
decreases.

That makes it possible to use the lexicographic order, provided that the last slot in
the array, at position 2n — 1 —we assume that the numbering starts at 0— never
increases his “right neighbor” which would again be process 0 (we have a ring).
If we place the process with the maximal user id, which never relays messages, as
first at the beginning of the array, then that’s ok.

20ne could make it more complex in that one argues, that the distance from any process to the process
with the maximal id, who swallows everything, is taken, but that’s not necessary. Indeed, one can go even a
step further: when one assumes a particular arrangement of id’s as given, then one knows a priori the travel
distance of each token which is determined by the arrangement, and can take that as a more refine measure,
instead of (2n,2n, ... ,2n).

Serie 8 (+ Losungshinweise) 7. Januar 2004

Aufgabe 2 (HS Leader Election (6 Punkte)) Bearbeiten Sie Aufgabe 15.3(a) + (b) auf
Seite 525 von [1], d.h., programmieren Sie eine asynchrone Variante des Leader-Election
Algorithmus’ von Hirschberg und Sinclair uns beweisen Sie ihn korrekt.

Solution: 3 4+ 3 Punkte. The algorithm is not much different from the synchrous one
(cf. [1, p. 33]). We have, of course, adhere to the declaration conventions for I/O automata etc,
but the basic idea remains the same. The send+ and send- storage cells of the synchronous
algorithm are replace by queues, as is typical for asynchronous algorithms. Furthermore, of
course, additionaly channel I/O automata are added between, in this case, each neighboring
automata in the ring.

One difference, of course, is that in the asynchronous setting, a process cannot rely on
the fact that the two exploratory message in a phase come back as in-messages at the same
time. Therefore, the process must “synchronize” by waiting until it has received both. In the
synchronous setting, this synchronization was for free by the fact that the two exploratory
messages travel tracel the same distance and the the execution proceeds in rounds.

Process (i) // HS

// Transitions

send (m) iyi+1
precondition: m is first on send+
effect : remove first element from send+
and send it to i+1

send(m);;—1 analogous

receive (m);_1,;
precondition:

message from (i-1) = (v,out,h) // out-reception from lower neighbor
effect:
case v > u and h > 1 add (v,out,h-1) to send+ // relay out
v >u and h = 1 add (v,in,1) to send- // reflect back
vV =u : status := chosen // getting own %d -> leader

// if v<u: out is ‘dropped’’
endcase

receive (m);_1,4
precondition:
message from (i-1) = (v,in,h) // in-reception from lower neighbor
precondition
message from i-1 is (v,in,1) and v # u // in reception

effect add (v,in,1) to send+ // relay in
message from (i-1) = (u,in,1) // in-reception from lower neighbor
precondition // I use pattern matching...
effect returned_from_left:= true
phase; ():
precondition:
returned_from_left = true and returned_from_right = true
effect:
returned_from_right := false;
returned_from_left :- false;
phase; := phase; + 1;

add (u, out, 2PM°) to send+;

add (u, out, 2P"%°) to send-;
leader;:

precondition:
status = chosen

effect:
status := reported

For correctness we should prove two things, safety and liveness.

Safety Safety is always by induction on the steps. the goal is to show that no one other than
the process with the maximal id reports leader. This happens if one out-token travels
the full circle. For all processes different from P; , , this intuitively cannot happen
since, at least, the maximal process will swallow it, and that is independant from the
phase (therefore, the inductive variants need not mention the phase).

We can phrase the above observation

“the out message of any non-maximal process never reaches beyond the max-
imal one”

more formally as:
j € [imaz,i[

Liveness

References

[1] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.

