
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Martin Steffen, Immo Grabe

Verteilte Algorithmen
Wintersemester 2003/04 14. Januar 2004Serie 9

Thema : (Aufgaben mit Lösungshinweisen)

Ausgabetermin: 14. Januar 2004

Abgabe: 19. Januar 2004

Aufgabe 1 (Peterson (3 Punkte)) Bearbeiten Sie Aufgabe 15.4 aus [?].

Solution: Peterson’s Algorithm for leader election in a ring network under asynchronous
execution is given on page 482 in [?]. As the other algorithms we have seen, the election
mechanism is based on an total ordering on user ids and the largest id is used to pick the
leader. The decisive insight, which also distinguishes this algorithms from the others seen
so far is, that the only thing required is that exactly one process is picked. If one does not
(unnecessarily) insits on the largest process being chosen, one need not “report back” to the
largest process; this economizes messages. So the trick is that the algorithm does not sieve
out processes until the “largest” one remains, but rather the tokens carrying the ids, until
the largest token survives; this then identifies the leader as the process on which it currently
resides.

Sieving out a token mean comparing it with it’s two “neighbor tokens”, i.e., its left and
right token. The smaller ones disappear from the game, only the largest of the three survives
the comparison. Of course the tokens as data cannot compare themselves; it must be done
by the processes, and to avoid “back messages”, one does the following trick: instead of
finding out whether a process is a local maximum by accepting messages from his (surviving)
neighbor processes, which requires a bidirectional ring, a process sends its id alone the ring for
a distance of 2. This allows a process to determine the maximum id for 3 neighboring tokens
and accepting it as new id, which obviosly breaks the linkage between original maximun id a
a given process1

In order to get an answer (which, btw., is P6) one can simply write down the tokes and
proceed as follows: find each lokal maximum. Move it one step clockwise (ignoring relay
nodes). This determines the survivors. Then continue with only the survivors until one (=
the maximum) token remains).

Of course this explanation is a certain simplification of what actually happens in the
asyynchronous network, but not much so. From the perspective of one processor node, the

1Another way to intuitively understand the n log n-message complexitity even if it’s an algorithm for

unidirectional rings is that intuitively the information flow and thus the sieving-out process works bidirec-

tional.

Serie 9 (+ Lösungshinweise) 14. Januar 2004

behavior “looks” synchronous: the (active) process simply takes exactly two messages, makes
its comparison, and continues with the next “round”.

Aufgabe 2 (Asynchroner Broadcast (6 Punkte)) Bearbeiten Sie Aufgabe 15.15 aus [?],
d.h., beweisen Sie die Korrektheit des AsynchBcastAck aus Abschnitt 15.3.

Solution:
The algorithm AsynchBcastAck, sketched on page 499 of [?], is an simple extension of

the spanning tree algorithm by some value to be broadcasted —a trivial extension— plus a
convergecast “phase”.

For correctness, we have to show safety and liveness.

Safety: for safety, the trick as always is to find the right (inductive) invariants. Let’s first
think what we intend a final result to be “safety”. The algorithm does, one could say,
three things:

1. build up the spanning tree,

2. send around the value to be broadcast, and

3. “convergecast” the acks.

For the last point, there is no obvious safety property as end result, which can be used
as specification.2 To generalize the first point we state:

1. at each reachable point, the “graph of the parent-pointers” T form a tree with root
i0 which is a subgraph of the network graph G = (V,E).

• for the base case, the statement obviously holds: all parent pointers are ini-
tialized to ⊥

• In the inductive step

2.

i = i0 ∨ parent 6= 0) then bcast ∈ Ci,j ∨ bcast ∈ send j ∨ parent j 6= ⊥, for all
j ∈ nbrs .

i = i0∨parent 6= 0)∧reported = true, then ack ∈ send(i)j ∨ack ∈ Ci,j ∨ j ∈ acked

(for all j ∈ nbrsi

Aufgabe 3 (Knotenanzahl im Netz (4 Punkte)) Bearbeiten Sie Aufgabe 15.20 aus [?],
d.h., geben Sie einen Algorithmus an der die Anzahl der Knoten im asynchronen Netz ermit-
telt. Der Korrektheitsbeweis ist nicht erforderlich.

Solution: The idea is that, in much the same way that the broadcast algorithm was
an adaptation of the simple spanning tree algorithm in that it piggy-backed the value to
distribute in the outgoing exploration message, we can here use the flooding back messages
(the “echo”) to report back information about the number of nodes. Since the outgoing

2Of course one can use auxiliary safety properties for the proof and for the intermediate steps, but the acks

themselves seem to have no real importance after the algorithm has terminated.

2

Serie 9 (+ Lösungshinweise) 14. Januar 2004

exploration messages build up a tree, each node can simply collect the number of descendants
it recieves via its neighbors, and relay it to its parent, adding 1. We can use the echoing
acklowledgement-messages for this purpose, but we have to be careful to count only those
coming from descendants in the tree, not all.

// exercise 15.2

...

States :

..

n = 1 : Nat // we start assigning each node weight 1

Transitions :

send(m)i,j // output

precondition:

m is first on send(j)

effect :

remove first element of send(j)

receive (" search ")i,j // input , exploration phase

effect :

if val = ⊥

then val := w;

parent := j;

for all k ∈ nbrs - {j} do

add (‘‘search ’’) to send(k)

else add "ack (0)" to send(j) // don ’t count along this edge

receive (" ack ", m) // input , echo

effect :

ack := ack ∪ {j}

n := n + m

report i (for i 6= i0) // internal

precondition:

parent not = ⊥

acked = nbrs - { parent } // all our neighbors have reported

reported = false // but we ourselven not yet

effect :

add "ack(n)" to send(parent)

reported := true // and we are through

report i (for i = i0) // root of the tree

precondition:

acked = nbrs

reported = false

effect

reported := true

What we cannot do is to postpone the acklowledgement-messages, i.e., send an ack-
lowledgement only if all neighbors have acklowledged, i.e., lower the degree of parallelism.
This, however, would lead to deadlocks in the algorithm.

3

