
Christian-Albrechts-Universität zu Kiel

Institut für Informatik und Praktische Mathematik

Prof. Dr. W.-P. de Roever

Martin Steffen, Immo Grabe

Verteilte Algorithmen
Wintersemester 2003/04 20. Januar 2004Serie 10

Thema : GHS (Aufgaben mit Lösungshinweisen)

Ausgabetermin: 20. Januar 2004

Abgabe: 26. Januar 2004

Aufgabe 1 (GHS (8 Punkte)) Lösen Sie Aufgabe 32 aus Kapitel 15. Halten Sie sich
dabei an den informell beschriebenen Ablauf, und verwenden Sie speziell die angegebenen
Nachrichtennamen aus [2, Abschnitt 15.5.5].

Solution: The algorithm is described [2, Section 15.5, p. 509]; the original reference is [1].
Let’s recapitulate what I remember about the algorithm, especially what is different from

the synchronous version. See also the explanation at the exercise about SynchGHS. The
most important difference seems to be the merge and absorb operation. The synchronization
roughly achieves that the levels are in sync, but we have to be careful to find a new unique
leader. Perhaps we could do another leader election, but, as already done in the synchronous
GHS, we can do smarter.

The core insight, already in the synchronous setting, that given an arbitrary number of
level k component that collapse, there is exactly one MWOE common to two components.1

This insight is used to distinguish the merge and the absorb operation.
[To do: A couple of things are not yet good. Hardest problem is, that merging is not allowed,

if the mwoe is not bidirectional. Another one is that also the leader must send a test. Minor ones is

that no report-success is done.] !?

// GHS (Gallager/Humblet/Spira) (Id: ghs.code ,v 1.39 2004/01/29 16:47:14 softtech Exp)
Types:

Level = Nat ;

Weight = Nat ;

CID = Weight * Level + UID // UID is used only for level = 0

Messages // just to get an overview

1The argument goes like this: we are given ar partitioning of the nodes in connected components, which
bild the trees of the forest. Each of the cliques picks one MWOE, i.e., one minimum edge which connects
to neighboring clique. It can easily be seen that, considering the cliques as nodes in a “supergraph” with
the MWOEs as edges, this yields a (directed) graph with exactly one cycle. If a component has an incoming
and an outgoing edge and an outgoing edge, then the weight of the outgoing edge smaller or equal then the
weight of the incoming edge by the minumality of the choice and the the weights in the undirected graph are
“symmetric”.. Since furthermore the weights of the edges are unique, the order-relation is strict, if the two
mentioned edges do not belong to the same unordered edge of the underlying graph. Since, as said above, there
is exactly one cycle in the graph, the cycle must be of length two. In other words: exactly two components
choose each other by and MWOE-link, and the two links are inverses.

Serie 10 (+ Lösungshinweise) 20. Januar 2004

initiate of CID // broadcast in component from leader

test of CID // probe some neighbor potentially outside

report of .. // convergecast in component

accept , reject of unit // answer to the test

changeroot of ... // leader to MWOE -node

connect of ... // contact the other component

probe_finished : bool = false

Signature

input : receive (m)i,j ; // input comm. with channel process

wakeup (): // trigger from outside

output : start ,reportm

internal : send(m)i,j

States :

i: Id // id of the process under consideration

uid : UID // unique identifier

level : Nat = 0; // from level k -> k+1: reducing the

// number of components. A level -k component

// as ≥ 2k nodes.

cid : CID = uid ; // at the very beginning (level = 0) , we use uid

mwoe : // local information concerning MWOE

core : Edge of Id x Id = ⊥ //

leader : Id = i // when merging , larger one of core edge will be taken

send[j], receive [j]: fifo queues for each j∈ nbrs , initially empty

branch : set of edges = ∅ ⊆ nbrs // part of mst tree fragment

rejected : set of edges = ∅ ⊆ nbrs

basic : set of edges = nbrs

Transitions :

send(m)i,j : // asynch . network model

precondition: m is first in send

effect remove first element of send[j]

receive j,i(m):

effect : add m to receive [j]

// --

t_initiate_and_probe_out

precondition: receive [j] = initiate (cid ’)@ r’ ∨ leader = i

effect :

if leader 6= i

then parent := j // remember where to converge -cast later

receive [j] := r ’; // remove it from the queue

cid := cid ’ (= (cw ’,l ’)) // store the component id (including the level)

else skip // the leader never receives an initiate message ,

// and its parent remains ⊥, the cid

// is provided either by initialization or

// at the end of the previous level .

add initiate (cid) to send[branch \parent] // relay (or spawn , if leader) the broadcast

// along the sons of the component tree

add test(cid) to send[basic]; // probe potential neighbors to

// determine their component.

// those from rejected need not

// be tested .

// The component id , i.e., the pair

// of the core weight and the level

// is sent to the neighbor for a

// comparison.

// should be optimized

// --

t_probeanswer_or_delay

2

Serie 10 (+ Lösungshinweise) 20. Januar 2004

precondition: receive [j] = test(cid ’) @ r’ // we receive a probe message

// potentially from a foreign group .

// cid may (initially) be of the form

// cid ’ = uid ’ for some user id , or

// cid ’ = (cw ’,level ’)

effect :

if cid ’ = cid

then add reject () to send[j] // call -back: I’m in the same component

else // different component id’s: cid 6= cid ’

if level ≥ l

then add accept () to send[j] // call -back: I’m in a different component

else // undecided yet: wait until level reaches l

pending [j] := delay(cid ’) // inform j, when level of cid ’ reached

// --

t_probeanswer_delayed :

precondition: pending [j] = delay(cid ’) ∧ // request for j still unanswered

cid ≥l cid ’ // but we’ve caught up , level -wise

effect : // so we give the belated answer as above

if cid = cid ’

then add reject () to send[j]

else add accept () to send[j]

fi;

pending [j] := ⊥ // flush

// --

t_probe_finished: // get the answers back

precondition:

head of receive [j] = m_j , for all j in basic

// all acks are back

effect

let rejected -ids = id’s with reject answer and

accepted -ids = id’s with accept answer

in basic := basic \ rejected -ids ;

rejected := rejected + rejected_ids;

mwoe := edge(i,j,w) = min accepted -ids // found a local candidate

// if accepted -ids = ∅,
// min is undefined

probed_finished := true

// ---

t_convergecast: // we can collect information

// as soon as we have received all our

// own probes and if all of our sons

// have send their opinion about

// the MWOE. contains the leader /root

// as special case

precondition:

have -probed = true ∧
head of receive [j] = m_j , for all j in branch \ parent

effect :

let messages be the set of all heads receive [j], j in branch \parent

mwoe := min(mwoe , messages) // build overal minimun; non -strict

if leader 6= i

then add report (mwoe) to send[parent]

remove head for all receive [j] // clear input buffers

else // if we are leader , we have no

// parent . We can therefore decide

// and initiate the next phase.

// the leader now knows the mwoe

// but this information must be

// handed down to the relevant process ,

// which is the one in the tree , which

// is mentioned in the mwoe

// this is done via a broadcast along the

3

Serie 10 (+ Lösungshinweise) 20. Januar 2004

// tree branches

leader := ⊥; // reset , I’m (probably) no longer leader

parent := ⊥ // and new parents will be handed out soon

add changeroot (mwoe) to send[branches];

// --

t_broadcast_mwoe: // if a process receives a changeroot -message

// it must compare whether it’s him or not. If not

// he can forget about it. If it’s him , it initiates

// the connect protocol.

precondition:

receive [j] = changeroot (mwoe) = changeroot (edge(in , out , w))

effect :

if i = in // if the node is the connector

then // time to connect to the partner out there

add connect (cid.level ,uid) to send[out]

branch := branch + (in ,out);

basic := basic - (in ,out)

else // if not , pass it on down

add changeroot (mwoe) to send[branches \parent]

// --

t_merge_or_absorb // if a component receives a connect -message

// it means it is contacted by another one ,

// who has chosen the edge as _his_ mwoe.

precondition:

receive [j] = connect (level ’,uid ’) @ r’

effect :

receive [j] := r ’; // remove it

if

level ’ = cid .level // identical levels =>

then // MERGE!

if (uid > uid ’)

then // I’m the new leader

leader := uid;

level := level + 1;

parent := ⊥; // the old parents are irrelevant

branch := branch + edge(i,j) //

cid := (weight (i,j), level)

add initiate (cid)

else // Nope , I’m not the new leader , my

skip // partner j is. I just do nothing ,

// as my machinery will (or has

// already has) send a connect to the opposite

// number and this is how j learns about

// his leadership. I just have to passively

// wait for the his initiate message , which , for

// me , opens the next stage

fi

else // level ’ < level : ABSORBE

// the sender j has to be ‘‘absorbed ’’

// i.e., incorporated into our mst

// the level is not advanced , but the

// other component has to be brought up -to date

// this is done using the initiate message

branch := branch + edge(i,j);

add initiate (cid) to send[j] //

Tasks : { ...}

initiate This internal transition is responsbible for getting the whole cycle starting. It sends
a broadcast within the clique of objects and triggers also the test-messages probing the
border of the true. Furthermore, it sets for each tree node except the root, the parent

4

Serie 10 (+ Lösungshinweise) 20. Januar 2004

“pointer” to prepare for the convergecast. The undirected tree is given by the branch

pointers; when the broadcast is done, and during the convergecast, the parent-pointers
are the directed spanning tree with the leader as root.

The information broadcast by this message is the component identifier, which is needed
to determine the MWOE. In first approximation, everything which identifies the com-
ponent can be used, for instance the unique identifier of the root. To assist in the
synchronization and merge/absorb procedure, however, one uses another piece of infor-
mation, namely (the weight of) one internal edge. Since weights are globally unique2

this can be used to identifier a component. Additionally, it is useful in to pair with this
identifier also the current level of the component.

There is a special case, however, and this is level 0. At this stage, the compents consist
all of single node, and this there are no component-internal node. We use the user id
of the root (which is the single-node, anyhow) as identification. Note, however, that
the initiate message is never used with this particular initial component identity, since
at level 0, each component has no tree-edges. Therefore the only place where are the
test-message probing the environment of the single-node component.

This internal transition is not only triggered by some received initiate-message, but also
for the (new) root at the beginning of a new level of a component; especially it is enabled
at the very beginning at round 0, where each node is a root and the set of branches is
empty, by initialization. Therefore, no initialization is sent, but a test-message towards
all direct neighbors.

probe-answer (t probeanswer or delay) The action is part of the query, sent at the rim of
a component towards the neighboring one. Each member of a (potentially) neighboring
component, and triggered in the course of its initialization phase, has sent us a test-
probe along one of its non-branch edges, and wishes now an answer whether we belong
to his component. We can compare the sent component id for this purpose; we have
to keep in mind here, that the component id in most cases is a pair of an internal edge
“identifier” —the unique weight, to be precise— and the level, but at level 0, the node-
identity is sent. Also the component id of us might be either such a pair or an process
identity (in effect, the self identity in this case).3 Anyway, since component identifiers
are unique, equality of the sent identity with the own immedately allows the answer,
that this edge cannot be the MWOE of the requester, since he’s in the same component
as we (and componts only merge, they never split).4

In case the cid’s are different, situation is less clear, since we might not yet be aware
of some new identity, which is distributed in the process of the merge/absorb proce-
dure which collapses two components. We can, however, use the transmitted level-
information to see whether we are lagging behind. If we are at least as advanced as
the sender, we can assure him that we are in different components (asserted by an
accept-message).5

2Per undirected edge, of course.
3Note that the identity (, 0) (I guess) is not possible. A component reaches level 1 by merging, which

means counting up.
4Note that if the sent cid is a user id, then the comparison must yield a false.
5Note that the levels are advanced not before the a new leader is determined and the leader is the first one

counts up; this starts the whole cycle again and, as said before, the new level is propagated across the next-level

5

Serie 10 (+ Lösungshinweise) 20. Januar 2004

The only case where we cannot give an immediate answer is when cid not = cid’

and our level is < than the one received. In this case we just have to wait until we
have reached the same level at which point the answer is determined. In delaying an
answer to some probing partner, we must cope with the fact that we might have more
than one answer pending for a while, but of course at most one along each neighboring
links, as the requester blocks for the answer. This late answer is given in the transition
t probeanswer delayed.

probe evaluation Now our perspective is back on the side of the probe-sender: we have sent,
and still as part of the initialization phase, along all out potential partners the probing
message, to form a “local opinion” about the MWOE. Later we will combine it with
information from our sons (if any) in the convergecast towards the root of our current
tree6 Anyway, that the convergecast rolls back in an orderly manner, we just collect
our own neighborhood information: when all queried neighbors —they correspond to
the list we have remembered in the basic-list— have answerd, we adapt the mwoe-
component. From all the ones which have answered with an accept, we store the edge
with the minimum weight as our local canditate. Additionally we appropriately adapt
the basic and rejected bookkeeping of our graph neighbors and prepare ourself for
the convergecast setting the probe finished flag.

convergecast Having completed the local neighborhood survey (using the basic neighborghs),
the convergecast may begin, echoing back the results to the root for evaluation and fur-
ther distribution. The direction is given by the parent pointers of each node, which at
this moment exactly represent a directed version of the component mst, with all arrows
pointed towards the root. During the convergecast, iteratively the minimum is built,
such the component-global mwoe is sifted out finally at the root. The covergecast use
the report-message, which carries the mwoe edge, including the weight information used
in the minimum construction.

inform connector and connect Once the mwoe is determined by the root of the com-
ponent, we must make use of this edge to really contract the neighboring component.
Since we know the connecting node, we just broadcast the mwoe to all nodes in the tree,
where everyone ignores it (but passes it on) except the connecting process. This time
we need not remember any parents. Now finally, the component via its connector can
do the basic indictive step, enlarging the component by connecting it to the neighbor
using the determined mwoe. To do so it sends the connector uid plus the component
level.

merge or absorb Now we switch perspective to the receiver of the connect request. There
are two different situations now.7

component as part of the initialization broadcast. The fact that we, the process being probed, have the same
level or a higher level one than the one sending the query, means that we cannot be in the same component
since in one component the identifiers are sent in separate “waves”. And especially the probe message is sent
before the MWOE of the component is determined.

6The root corresponds to our current leader, but it seems we don’t need a state veriable for that. We might
as well use a boolean flag.

7Remember the graph-theoretical property, that, under the assumptions given: adding for each group of
components a mwoe, gives exactly one length-2-cycle. This is the new core edge and determines the new leader.
But actually, this is not so important.

6

Serie 10 (+ Lösungshinweise) 20. Januar 2004

Aufgabe 2 (GHS-Ablauf (3 Punkte)) Lösen Sie Aufgabe 34 aus Kapitel 15 (Seite 528),
d.h. beschreiben Sie einen Ablauf des GHSbe dem eine reject-Nachricht als Antwort auf Test
zum einem Zeitpunkt zurückkommt, bei der “Fragesteller” diese Kante als branch, also zum
MST gehörig klassifiziert hat. Argumentieren Sie, daß das in Ordnung geht.

Solution: First it is clear, that the test-message is sent along non-branch-edges, only,
which is done in the course of the initiation-broadcast. This means, between the sending of
the test and the reception of the reject-answer, the process must have changed added the
value to its branch-set. Adding a branch is the core step which joins two component (by
absorbing or merging). Since the process i, along this edge (i, j) sends only one test-message
and “blocks” afterward (on this edge) it will not itself finish his “local survey.” and this
compent it belongs to will not be able to finish its search for a MWOE, which could result in
adding this edge to the branches.

The only way, therefore, that the branch is added is that caused by another component.
Especially, the other component can connect to the current component by choosing (j, i), i.e.,
the edge (j, i) in the reverse direction, as bridging MWOE.

More concretely, a following scenario is possible. Assume processes i and j as members
in two (currently) separate components Ci and Cj , with level li > lj. The order is impor-
tant, since we want i to send a test-message, and the opposite number j to delay the answer;
therefore the level known at j must be strictly smaller. Anyway, i sends the test to j (tran-
sition t initiate and probeout) at which point the outgoing edge (i, j) is not part of the
branches.8 “At the same time”, j is in the same situation (but at a lower level) and conversly
sends his test-message the opposite direction to i, who answers immediately with an accept.

Assume then that component Cj is able to complete the search for a mwoe and it deter-
mines (j, i) as bridge to Ci. After receiving the mwoe-broadcast inside Cj, the node j adds
(j, i) to his branches and sends the connect-message to i. The level-situation at this point
is still unchanged, which means that Cj is absorbed! Anyway, when i receives the connect-
message in transition t merge or absorb, it adds the (i, j) to his branches in turn, 9 and by
comparing the level decide that it is engaged in an absorbed. The level is not counted, of
course, no new leader is chosen, simply Cj is swallowed. Process i triggers this by sending j

an initiate-message, which especially contains the level of Ci which strictly higher than the
one of Cj . The initiate-message percolates through Cj, and especially raises the level of j.
This finally unlocks t probeanswer delayed, which sends back a reject, since both are in the
same component in the meantime.

For the algorithm, that’s ok. Since the edge we discussed is rejected, it won’t contribute to
any MWOE to the outside. If Ci (or now the Ci-part of the conbined component) had already
had gotten some accept-messages, that’s ok, since it’s level and its root has not changed.

8The sets branch and basic are disjoint.
9This makes the subgraph determined by the branch-variables symmetric/undirected again.

7

Serie 10 (+ Lösungshinweise) 20. Januar 2004

// GHS (Gallager/Humblet/Spira) (Id: ghs2.code ,v 1.1 2004/02/10 06:14:53 Steffen Exp)
// another variant (kudos Immo)

Transitions :

// ---

send(m)i,j // ‘‘standard out ’’

precondition:

m is first on send(j)

effect :

remove first element of send(j)

// --

initiate_search

precondition:

status = intitiating

effect :

reported := ∅;
mwoe := ∞;

∀(cid ’,k) ∈ pending_test

if cid ’. level = cid .level

then if cid ’. core = cid .core

then

rejected := rejected ∪ (basic ∩ k)

basic := basic \ k;

add reject to send k

else

add accept to send(k);

pending_test := pending_test \ (cid ’,k);

branch := branch ∪ k, ∀ (k) ∈ pending_connect;

pending_connect := ∅;
if length (basic) > 0

then status := searching

add test(cid) to send(first (basic))

else

status := reporting

add initiate (cid) to send(k), ∀ k ∈ branch \ parent

// ---

receive initiate (cid ’)j,i

effect :

parent := j;

cid := cid ’;

status := initiating

// ---

receive changeroot (mwoe ’)j,i

effect :

status := connecting ;

mwoe := mwoe ’;

add changeroot (mwoe) to send(k), ∀ k ∈ branch \ parent

// ---

receive connect (cid ’)j,i

effect :

if cid ’. level < cid.level

then branch := branch ∪ j;

basic := basic \ j;

if status = seaching ∨ status = reporting

then add initiate (cid) to send(j)

else if

cid ’. level = cid.level ∧
(status = connecting ∨ status = connected) ∧
mwoe = (i,j)

then if i > j

then parent := null

status := initiating

cid := (mwoe ,cid.level + 1)

else

insert (cid ’,j) to pending connect

8

Serie 10 (+ Lösungshinweise) 20. Januar 2004

// ---

connect

precondition:

status = connecting

∃i∈ nbrs : (i,j) = mwoe

effect :

if (cid ’,j)∈ pending_connect ∧ i > j

then

parent := null

cid := (mwoe , cid.level +1);

status := initiating

else

branch := branch ∪ j;

basic := basic \ j;

status := connecting

add connect to send(j)

// --

receive (test(cid ’)) i,j

effect :

if cid ’.level < cid.level

add accept to send(j)

else if cid ’.level = cid.level

if cid ’. core = cid.core

then

rejected := rejected ∪ (basic ∩ j);

basic := basic \ j;

add reject to send(j);

else

add accept to send(j)

else

insert (cid ’,j) to pending_test

// ---

receive (reject)j,i

effect :

rejected := rejected ∪ (basic ∩ j);

if length (basic) > 0

then add test(cid) to send(first (basic))

else status := reporting

// --

receive (accept)j,i

effect :

mwoe := (i,j);

status := reporting ;

// ---

receive report (mwoe ’))j,i

effect :

if weight (mwoe ’) < weight (mwoe)

then mwoe := mwoe ’;

reported := reported ∪ j

// --

report

precondition:

status = reporting ;

branch = reported ;

parent 6= null

effect :

status := reported ;

add report (mwoe) to send(parent)

// ---

report

precondition

status = reporting ;

branch = reported ;

9

Serie 10 (+ Lösungshinweise) 20. Januar 2004

parent = null

effect

if (mwoe < ∞)

then status := connecting

add changeroot (mwoe) to send(j), forallj∈branch

else status := done

// ---

References

[1] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Systems,
5(1):66–77, 1983.

[2] Nancy Lynch. Distributed Algorithms. Kaufmann Publishers, 1996.

10

