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Aufgabe 1 (MST (6 Punkte)) Bearbeiten Sie Aufgabe 15.38(a) aus [1].

Solution: The SimpleMST -algorithm is described at page 522. It can be seen as a
“adaptation” of the SynchGHS (cf. [1, p. 66]) to the asynchronous setting. Of course the
algorithm is not identical to the synchronous one. A particular difference is that in the
synchronous setting, there is not absorb/merge distinction.

The starting point for this exercise is the (asynchronous) GHS. Basically the only thing
to change is to achieve that mwoe is determined (more or less) synchronously. In the GHS,
a component (or rather a process at the border of the component) surveys its neighbors
at any time by sending out the test-messages. This leads (sometimes) to the delay of the
answer.

Here, the process at level k does not send out the test unless at least the local envi-
ronment of the process is at the same level. That’s still a bit “less synchronous” than the
SynchGHS, where it is guaranteed that the whole network across component boundaries is
at the same level. Here this is not possible, but if we only probe neighbors which have the
same level, then at least we don’t have to wait for the answer. To be always up-to date,
each process sends informs his neighbors each time it reaches one new level.

Aufgabe 2 (MST + leader election (4 Punkte)) Bearbeiten Sie 15.40 aus [1]

Solution: The problem is stated at [1, page 523], respectively the STtoLeader -algorithm
at page 501. In the code below, we assume that we are given the undirected, unrooted
spanning tree as part of the branches-variables.
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lsttoleader i // p.501

messages :

signature :

states :

branches ⊆ nbrs // contains the unrooted tree

send[j] : queue of Nat , for all neighbors , intialy empty

has_elected ⊆ branches = ∅
transitions :

// -----------------------------------------------------------

send(m)i,j // standard trans ’ns

precondition: m is first on send(j) // using the output

effect : remove m from send(j) // send buffers

// -----------------------------------------------------------

convergecasti

precondition:

branches = {j} // i is a leaf

reported = false

effect :

send[j] := send[j] :: elect (uid ) // send my uid

reported := true // elect only once

// -----------------------------------------------------------

convergecasti

precondition:

reported = false

|branches | > 1 // i is not a leaf

branches \ has_elected = {j} // one has not elected

effect :

send[j] := send[j] :: elect (uid ) // send my uid

reported := true

// -----------------------------------------------------------

convergecasti

precondition:

branches = {} // degenerate tree

reported = false

effect :

reported := true // elect only once

leader := i

// -----------------------------------------------------------

receive (elect(uid ’))j,i //

effect :

has_elected := has_elected + j // one more has elected

if reported = false

then if branches \ has_elected = {p} // one more left

then send[p] := send[p] :: elect(uid );

reported := true

else skip

else // I have already reported

// which means that I must have

// sent my elect to j, which

// must have been the last open

// branch .

if uid > uid ’

then leader := true

else skip

// -----------------------------------------------------------

Aufgabe 3 (Logical time für CountMoney (6 Punkte)) Bearbeiten Sie Aufgabe 18.5
aus [1], d.h., entwickeln Sie, ausgehend von dem Geld-Transfersystem und mit Hilfe logis-
cher Uhren schrittweise den CountMoney-Algorithmus.

Solution: The exercise CountMoney ask to explicitely carry out the transformations
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for the logical time and for one of the applications using the time stamps, namely on the
example of the CountMoney-algorithm. We start with the simple banking algorithm from
Figure 1. The transfer functionality is modeled by some non-deterministic internal action,
which, depending on the state, chooses some amount of money and one process to transfer
the money to. Next we add Lamport’s clocks to the basic bank algorithm (cf. Figure 2).

bank_system i

types:

messages :

signature :

input : receive i,j(m), j ∈ nbrs

output : send(m)i,j , j ∈ nbrs

internal : transfer i,j , j ∈ nbrs

states :

money : Nat = m_i; // some initialization

send : [1.. n] -> ( queue of Nat );

transitions :

// -----------------------------------------------------------

send(m)i,j // standard trans ’ns

precondition: m is first on send(j) // using the output

effect : remove m from send(j) // send buffers

// -----------------------------------------------------------

receive (m)i,j // we receive new money

effect :

money := money + m; // update the balance

// ------------------------------------------------------------

transfer i,j

precondition: (m,j) ∈ ϕ(state ) // some condition

effect : // non -det. autonomous

money := money - m; // sending of money

send[j] := send[j] :: m;

tasks:

{ send(m)i,j | j ∈ nbrs } +

{ transfer i,j | j ∈ nbrs }

Figure 1: Bank system

The extension is straightforward.
Finally the CountMoney-algorithm (cf. Figure ??). Conceptually, the algorithm con-

sists of two phases (both are required in the exercise):

1. an agreement,1 which deadline is taken when to count the money, and

2. the “snapshot” procedure proper.

As for the agreement, the code below uses a predefined sequence of points in time:

1 2 4 . . . 2n . . .

1Here we do not deal with a full-blown agreement problem. It is possible, indeed required, that the
processes share some common knowledge initially about which start time(s) to take. The problem is that
fixing one particular start time may lead to a situation, where this point is already past, for some process.
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bank_system i // additional clocks ( Lamport)

types : Clock = Nat;

messages :

signature :

input : receive i,j(m), j ∈ nbrs

output : send(m)i,j , j ∈ nbrs

internal : transfer i,j , j ∈ nbrs

states :

money : Nat = m_i; // some initialization

send : [1.. n] -> ( queue of Nat );

clock : Clock = 0;

transitions :

// -----------------------------------------------------------

send(m,c)i,j // standard trans ’ns

precondition: m is first on send(j) // using the output

effect : remove m from send(j); // send buffers

clock := clock + 1; // Lamport ’ clock

// -----------------------------------------------------------

receive (m,c)i,j // we receive new money

effect :

money := money + m; // update the balance

clock := max(clock ,c) + 1; // Lamport ’s clock

// ------------------------------------------------------------

transfer i,j

precondition: (m,j) ∈ ϕ(state ) // some condition

effect : // non -det. autonomous

money := money - m; // sending of money

send[j] := send[j] :: m;

clock := clock + 1; // also here we clock

tasks:

{ send(m)i,j | j ∈ nbrs } +

{ transfer i,j | j ∈ nbrs }

Figure 2: Bank system + Lamport

4



Serie 12 (+ Lösungshinweise) 4. Februar 2004

One problem is to assure, as said, that the point agreed upon does not lie in the past. If
some process intends to do some money count, it wants to do so at the “next” appropriate
point in time. It must therefore find out what the times of the other processes are. By the
time he knows the other may have continued to count up their clocks!2 Fairness can never
assure that a particular (finite) deadline is not missed.

Anyway, one way out would be that once a process learns that there is a counting
procedure going on with a deadline in the future, it should stop transferring money around,
lest to count up the time until the counting money is acknowledged, and then the time has
passed once more. This way of dealing with the problem —stop the actions— is not what
is wanted; the free transfer of money should not be restricted by the need of counting.

Another way to deal with the problem is that given the predefined sequence of un-
boundedly increasing points in time

t0 t1 . . .

each process performs the count-money book-keeping for all ti in parallel.
In Figure ?? we (somewhat wrongly) assume some predefined, globally-agreed time

tfix . A process whose time is strictly less than tfix can just take part in the transfer game,
updating the money-variable as it sends and receives transfers. If the point is reached,
for the process, it is time to count the money. For the process, it means: all the money
it currently has plus the one the will sooner or later arrive and which has not yet been
counted by the sender. According to the conventions in [1], the time stamp of an event
depends on the value of the clock after the event has happened, and furthermore money
sent or received at the exact logical time tfix is counted at the process to which the time
belongs (it’s not “transit money”).

A process starts counting money if in one step it reaches or crosses the time line tfix .
This, of course, is faulty, as we cannot be sure (and fairness does not help here) that the
fixed deadline has not yet passed. If a process, for some reason, has passed the timeline
already, then the following error occurs. The sender process, after the time line, transfers
the money, i.e., puts it on the outgoing queue and just counts the money after subtracting
the amount. Therefore this should count as “transit money”. The receiver, however,
cannot know that the sender has not counted it, because it is no “transit money” in his
eyes.

count_money i // count money with _fixed_ deadline t

types : Clock = Nat;

Time = Clock * Pid // Lamport: lex. order

messages :

transfer of Nat * Clock ;

signature :

input : receive i,j(m), j ∈ nbrs

revision i

output : send(m)i,j , j ∈ nbrs

balance (m)i // send balance to env.

internal : transfer i,j , j ∈ nbrs

2As an aside: note that doing a broadcast + convergecast “synchronizes” the clocks to some extent.
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states :

t : Time = tfix // predefined time

money : Nat = m_i; // some initialization

send : [1.. n] -> ( queue of Nat );

clock : Clock = 0;

counting [j] : notyet + ongoing + done = notyet // 3 stages of counting , per neighbor

// notyet is universal for all neighbors ,

// however

transitions :

// -------------------------------------------------------------------------

send(m,c)i,j // standard trans ’ns

precondition: m is first on send(j) // using the output

effect : remove m from send(j); // send buffers

clock := clock + 1; // Lamport ’ clock.

// This transition does not change

// the money -> we don ’t check whether

// we cross the time line.

// ---------------------------------------------------------------------

receive (m,c)i,j // we receive new money

effect :

clock := max(clock ,c) + 1; // Lamport ’s clock

if tfix ≤ (clock ,i) // we are after the line

then if counting [j] = notyet

then counting [j ’] := ongoing , ∀ j’ ∈ nbrs

// we must copy money to balance only once

balance := money ; // freeze our own current money

// as of now ( before the update !)

else skip // so far , the new money has

fi; // not entered the books .

// if we are before the line -> balance = 0

// otherwise: balance is the amount before that

// reception and counting is on.

if (c,j) < tfix ∧ // money sent before the line

counting [j] = ongoing // accumulate transit money;

then balance := balance + m;

else counting [j] := done // we are through with j , since the queues

// are fifo and the times are monotone.

money := money + m; // we must not forget the general bookkeeping...

// ------------------------------------------------------------

transfer i,j

precondition: (m,j) ∈ ϕ(state ) // some condition

// m = 0 counts as dummy

effect : // non -det. autonomous

clock := clock + 1; // also here we clock

if tfix ≤ (clock ,i) // we are after the time line

then if counting [i] = notyet // we have crossed it right now

then counting [j ’] := ongoing , ∀ j’ ∈ nbrs

balance := money -m; // freeze the money , after

// the update ! The value of money

// is before the time line. The amount

// m will be counted at the receiver.

else

skip

else skip ; // time has not yet come

money := money - m; // don ’t forget to bookkeep and

send[j] := send[j] :: (m,(i,clock )); // send the timestamped money indeed

// ------------------------------------------------------------

balance i(m) // announce the result

precondition:

m = money;

counting [j] = done , ∀ j ∈ nbrs // all transit money has arrived
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effect :

clock := clock + 1;

tasks:

{ send(m)i,j | j ∈ nbrs } +

{ transfer i,j | j ∈ nbrs }

One way out is that each process performs the accounting procedures for an “infinite”
number of predefined time lines while the local time proceeds. This means we have to
generalize the above process such such that there are balances for a countable sequence of
ever-growing time-lines t0, t1, t2 . . . . In the above algorithm with a fixed time, we modeled
the termination and output simply by requiring, that the process has reached the predefined
deadline and especially that it has received all transit money from all neighbors.

Now we have to be more careful. If a process has received all transit money belonging
to time tr, this does guarantee that all other processes did not start after this deadline,
leading to the error described above. So a process cannot send out it’s balance value for
ti unless it is sure that all others in the network had been able to meet this deadline. In
order to find out, it sends around a wave of broadcast/convergecast messages. Each process
answers whether it has a valid balance wrt. proposed date.

count_money i // count money

types : Clock = Nat;

Time = Clock * Pid // Lamport: lex. order

messages :

transfer of Nat * Clock ;

signature :

input : receive i,j(m), j ∈ nbrs

revision i

output : send(m)i,j , j ∈ nbrs

balance (m)i // send balance to env.

internal : transfer i,j , j ∈ nbrs

states :

t : Nat -> Time // growing sequence of time lines

money : Nat = m_i; // some initialization

balance : Nat -> (Nat + undef ) = undef , for all r \in Nat

send : [1.. n] -> ( queue of Nat );

clock : Clock = random numer ; // some init value

counting [r][j] : notyet + ongoing + done = notyet // 3 stages of counting , per deadline and

// per neighbor

// notyet is universal for all neighbors ,

// however

transitions :

// -------------------------------------------------------------------------

send(m,c)i,j // standard trans ’ns

precondition: m is first on send(j) // using the output

effect : remove m from send(j); // send buffers

clock := clock + 1; // Lamport ’ clock.

// This transition does not change

// the money -> we don ’t check whether

// we cross the time line.

// ---------------------------------------------------------------------

receive (m,c)i,j // we receive new money

effect :

newclock := max(clock ,c) + 1; // Lamport ’s clock

∀ k ∈ Nat . // this only _looks_ like an

// infinite loop : -) If we loop from zero

// upward , then comes some k’ s.t.
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// t(k’) > ( newclock ,i). By assumption ,

// all k’’ > k, are even larger ; hence

// we can break out of the loop here.

// The loop can be further optimized by

// realizing that k’s belonging to

// past time points need not be rechecked ,

// but that ’s finetuning...

if (clock ,i) < t(k) ≤ ( newclock ,i) // we just crossed t(k)

then counting [k][j ’] := ongoing , ∀ j’ ∈ nbrs

// we must copy money to balance only once

balance [k] := money ; // freeze our own current money

// as of now ( before the update !)

// if we never _cross_ the line , balance[k]

// will remain undefined.

else skip // so far , the new money has

fi; // not entered the books.

// if we are before the line -> balance = 0

// otherwise: balance is the amount before that

// reception and counting is on.

if (c,j) < t(k) ∧ // money sent before the line

counting [k][j] = ongoing // accumulate transit money;

then balance [k] := balance [k] + m; // note that balance[k] on the lhs is not undefined he

else counting [k][j] := done // we are through with j and t(k), as the queues

// are fifo and the times are monotone.

end loop;

money := money + m; // we must not forget the general bookkeeping...

clock := newclock ;

// ------------------------------------------------------------

transfer i,j

precondition: (m,j) ∈ ϕ(state ) // some condition

// m = 0 counts as dummy

effect : // non -det. autonomous

newclock := clock + 1;

∀ k ∈ Nat // again , no real danger here

if (clock ,i) < t(k) ≤ (newclock ,i) // we crossed line t(k)

then counting [k][j ’] := ongoing , ∀ j’ ∈ nbrs

balance [k] := money - m; // freeze the money , after

// the update ! The value of money

// is before the time line. The amount

// m will be counted at the receiver.

end loop;

money := money - m; // don ’t forget to bookkeep , to

clock := newclock ; // update the clock , and to

send[j] := send[j] :: (m,(i,clock )); // send the timestamped money indeed

// ------------------------------------------------------------

finish -ki: // aux. transition

precondition:

counting [k][j] = done , ∀ j ∈ nbrs // all transit money has arrived

effect :

counting [k][i] = done;

clock := clock + 1;

// ------------------------------------------------------------

broadcast i // try to get time tk through

// This will work similar than the

// asychronous broadcast with ack.

// We have to be careful , however , that

// other processes will use the same procedure

// such that we don ’t mess up different

// broadcasts/convergecasts ...

precondition:

k is minimal s.t.

counting [k][i]= done

effect :

clock := clock + 1;

send[j] := send[j] :: ( candidate (k), i, clock ), for all neighbors j

8
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// the identity must be attached , because

// many broadcasts will be done at the

// same time.

// ----------------------------------------------------------------------------

receive (candidate (k),j’,c)j,i //

effect :

if bcast[k][j ’] = false // I have not yet heard of the broadcast

// for time k, started by j’

then parent [k][j ’] := j; // for convergecast

bcast [k][j ’] := true

send[j] := send[j] :: ( candidate (k,j’), clock ), for all neighbors j \ parent [k][j’]

else send[j] := send[j] :: ( ack(k,j’), clock ) // immedatly do the convergecast

// ----------------------------------------------------------------------------

receive (ack (k,j’))j,i // the convergecast , initiator j’, time k

effect :

acked[k][j ’] := acked [k][j ’] + j;

// ----------------------------------------------------------------------------

converge i // similar to report of simple bcast with acks ’

precondition:

parent [k][j’] 6= null

acked[k][j ’] = nbrs - parent [k][j’]

counting [k] = done // I have met deadline k!

effect

send[j] := send[j] :: ( ack (k,j’), clock ), j = parent [k][j]

// ----------------------------------------------------------------------------

balance (m)i

precondition:

reported = false

parent [k][i] = null; // I’m one root for time k

acked[k][i] = nbrs // all my neighbors have answered

effect :

reported := true; // I’m done! And I don ’t do a broadcast as root later!

// I will participate in other processes broadcast/

// convergecast round , of course .

// ----------------------------------------------------------------------------

tasks:

{ send(m)i,j | j ∈ nbrs } +

{ transfer i,j | j ∈ nbrs }

Aufgabe 4 (Unlogische Zeit (4 Punkte)) Bearbeiten Sie Aufgabe 18.4(a). Geben Sie
dabei für das Weglassen jeder der Bedingungen für logische Zeit eine Transformation an.

Solution: Let us first recapitulate the 4 conditions for logical time.

uniqueness: each event gets a unique timestamp.

local causality: locally for one process, the timestamps for each are strictly increasing.

communication causality: matching send and receive-events are strictly ordered.

finiteness: for each value from the time domain, there are finitely time values strictly
smaller.

Let’s address the conditions in the order given.
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1. We can drop the uniqueness by taking the same setting as in Lamport’s implemen-
tation but extend the time domain by a universally smallest time event, say ⊥. All
processes start with this value as time stamp for the first event, then this violates the
uniqueness requirement, but leaves all other conditions unharmed. Indeed, this idea
works also for Welch’s solution and, as it seems, for any implementation of logical
time.

Another simple idea is to take Lamport’s clocks and omit the process idea from the
time values. This clearly destroys uniqueness of the timestamps. By counting up
the clock as before, and by updating one own clock when learning that one “lags
behind” upon message reception, the conditions for strict monotonicity are still met.
Obviously, also the finiteness requirement is not destroyed.

2. Here the problem is to keep uniqueness, which for part 3 is guaranteed by the different
process id. A possible route simply make rather weak restrictions on the time domain,
namely to require a quasi-ordering, only. [1] is not explicit what should be expected
of the time domain beyond the 4 conditions of logical time.3

If one takes Lamport’s clocks, pairs of local clock value and process id, and if one
uses as order on Clock × Procid = N × N simply the order relation on Clock, i.e.,
one simply does not use the process id as “tiebreaker”, then one obtains a qua-
siordering, antisymmetry is gone. The other 3 conditions of logical time still hold.4

Another strategy could be to count up upon reception, but when on counts for an
non-reception, one allows to go back in the count. To avoid going back indefinitely,
one could take the smallest unused number so far.

3. To violate causality for communication, is simple. Using Lamport’s clocks as starting
point, we attack the strictness part of the definition. We count up locally as before,
but for the receive-event, we do not count up wrt. transmitted timestamp. This
means, upon reception, the new clock value is the maximum from the transmitted
clock value and the incremented local clock value. Note that especially the uniqueness
requirement still hold. The worst that can happen is the the clock values of sending
and reception are identical (in case the receiver lags behind), but then the process
id can be used as tiebreaker.5

4. That’s trivial. Given a time domain T , we may simply add one extra value, say ∞

with t < ∞ for all t from T . Since T must be infinite,6 we immediately obtain a
violation of the finiteness assumption: taking a infinite sequence α, a logical time
assignment assigns to each of the infinite many events of α some t ∈ T .

3Those have of course, some implications on the “causality relation”. For instance to be strictly
increasing implies to be in some “strict order relation”.

4To be precise, the finiteness condition hinges on the fact that there are only finitly many processes.
For Lamport’s and Welch’s implementation, this assumption is not needed!

5Note that this works only if a process cannot send messages to itself!
6The conditions for strict monotonicity imply this.
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Since already the change the underlying time domain does the trick, one firstly can
use any logical time implementation which consequently never reaches the additional
value ∞, and secondly, the other 3 conditions are trivially still hold, since ∞ is a
time stamp which is never used in an assignment nor in an implementation. Note
that a time assignment from an execution into the time domain is required to be
injective, but not surjective.

Another solution could be to use a dense time domain, for instance the rational
numbers.
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