
Christian-Albrechts-Universität zu Kiel
Institut für Informatik

Prof. Dr. W.-P. de Roever
Jens Schönborn und Jan Waller

!(
)+

Nebenläufige und verteilte Programmierung
Wintersemester 2006/07 18.12.2006Serie 9

Ausgabetermin: 18.12.2006

Abgabe: 8.1.2007 (11:00)

Aufgabe 1 (6 Punkte) The following problems refer to the Java programs in Section 5.4.
The sources for the programs can be downloaded from the Website for this book.

1. Write a simple program that has two classes. One defines a thread and has a run
method that prints a line; the second is the main class that creates a thread. In the
main class, create and start the thread as described in the text. Then try calling the
run method directly rather than indirectly via start. (Namely, use s.run() if s is the
thread.) Describe what happens and why.

2. Develop more realistic simulations of the readers/writers programs. Use multiple readers
and writers and modify them so that you can observe that they synchronize correctly.
Perhaps modify the database to make it somewhat more realistic, or at least to have
read and write take longer. Also have each thread sleep for a small random amount
of time before (or after) every access to the database. Java provides several methods -
such as nap, age, random, and seed - that you can use to construct your simulations.
Write a brief report summarizing what you observe.

3. Modify the ReadersWriters class to give writers preference. Repeat your simulations
form part 2, and summarize what you observe.

4. Modify the ReadersWriters class to make it fair. Repeat your simulations from part
2, and summarize what you observe.

Aufgabe 2 (4 Punkte) Develop a Java program to simulate the dining philosophers pro-
blem (Section 4.3). Your program should have 5 philosopher threads and a class that im-
plements a monitor to synchronize the philosophers. The monitor should have two methods:
getforks(id) and relforks(id), where id is an integer between 1 and 5. Have the philoso-
phers eat and sleep for random amounts of time. Add print statements to your program to
generate a trace of the activity of the program. Write a brief report summarizing what you
observe.


