
UML state machine version
Fortgeschrittenenpraktikum im Wintersemester

2006/2007

Harald Fecher, Heiko Schmidt, and Meiko Jensen

Lehrstuhl Softwaretechnologie
{hf,hsc,mje}@informatik.uni-kiel.de

1 General

This programming exercise deals with the implementation of a graphical modeling lan-
guage. It includes visual representation and semantic derivation as well as verification
support like model checking and refinement checks. The tool shall be developed in
groups (number of groups depends on number of participants). The setting describ-
ing the model, semantics and tool support, which has to be implemented, is presented
in Section 5. Section 6 deals with the separate programming modules. The evaluation
method for this programming exercise can be found in Section 4, and the documenta-
tion requirements can be found in Section 3. In Section 2, the schedule for the exercise
is given and some advice on some topics regarding this course is given in Section 7.

2 Schedule

Number Date Name Meeting
required

1. 20.10. General organization X
2. 31.10. Arrangement of groups and assignment of tasks within the groups Mail
3. 10.11. Presentation of specification draft X
4. 15.11. Final specification and working plan Mail
5. 17.11. Presentation of final specification and working plan X
6. 13.12. Progress report including documentation Mail
7. 15.12. Presentation of progress report X
8. 12.01. Terminated feature report Mail
9. 31.01. Code deadline, final report including documentation Mail
10. 02.02. Final presentation X

Participation in required meetings is mandatory. If common sense is agreed, differ-
ent dates can be arranged, but only during the first 10 days. Thereafter the deadlines are
strict.

2.1 Organization

We encourage the participants to contact the organizers in case of questions of any kind,
or ideas concerning the project (e.g., about additional features).

– Every Thursday 10-11 Meiko is available for questions, especially for technical
questions (Java, programming environment, etc.) at room 1107.

– For other questions every group may request a meeting (though not the whole group
has to attend it) by mail with Harald or Heiko. For questions concerning the un-
derstanding of the different tasks Harald should be preferred, whereas for other
questions Heiko should be favored.

3 Documentation requirement

Writing full length project reports is not part of this exercise. However, three of the
deadlines include a short written report (2-3 pages each) about the group’s progress.

– Final Specification and working plan should include:
• detailed responsibility assignment (preferably including comments on group

organization)
• schedule (e.g. using Gantt Chart) including prognosis of work that should be

finished until progress report
• detailed interface description

– Progress report should include:

• revised schedule, showing previous as well as remaining work
• progress description of individual modules incl. outlook on remaining work
• revised interface description (if changed since working plan)
• unexpected problems that might have occurred and how they have been solved

– Terminated feature report should include:

• a list of of the contained features for every group (the feature list may not be
modified afterwards)

• a short description of every feature

– Final report should include:

• program status
• final interface description (if changed since progress report)
• description of unfinished tasks and known unsolved bugs
• unexpected problems that might have occurred and how they have been solved

4 Evaluation

The evaluation is made at the end of the course depending on the delivered code, docu-
mentation, and presentations. The final code is most important. We also expect interac-
tion between the participants (including organizers) in order to maximize the success of
the resulting software project. Deadlines are strict (once they have been agreed upon).
If deadlines are missed, it is possible that not all SWS-points can be given. Missing
SWS-points for a Schein can however be obtained after the semester by providing extra
work.

� �
� �0

� �� �
1 � �� �

2- � �
� �3� �� �

5 � �
� �4� �� �

6-
- � �

� �0

� �� �
3

� �� �
2td×�td -j

td�

� �� �
5

� �� �
4

?
� �� �

1�

Fig. 1. Two core state machines.

5 Setting

In this section the theoretical foundations are presented.

5.1 Modeling language

First an informal Before the system is formally presented, we refer to a illustration
example in Figure 1.

The model we call core state machine consists of

– a finite set Var of variables, which have a finite domain in the natural numbers,
which in turn may vary between the variables

– a finite set of events E
– different graphical components: states (final or non-final), which can be nested,

regions, pseudostates (entry, exit (three different kinds), choice). States are rectan-
gular boxes. Regions are depicted as dashed lines dividing a state. Choice pseu-
dostates are depicted as diamonds. Entry pseudostates are circles on a state border.
Exit pseudostates are circles on the state border, where a p, a n, or c is written
inside. Different states and choice pseudostates may not overlap.

– a finite number of transitions (arrows) between (pseudo)states. For further con-
straints how the source and target of the transitions are restricted we refer to [1]. A
transition has an element from E (or none), a guard g and an activity α. Here

α ::= skip | x := t | x := random(N) | send(e, y)

t ::= y | t + t | −t | t ∗ t

g ::= y ≥ z | y = z | nab | wla | g ∧ g | ¬g | g ∨ g |

where x ∈ Var, y, z ∈ Var ∪ IN is variable, N is a finite subset of natural num-
bers, and e an event. The meaning of these terms are as follows: skip is an activity
without any effect; x := t is a variable assignement; x := random(N) is a vari-
able assignement where a random variable from N is assigned to x; send(e, y) is
a sending of event e combined with the number y, resp. the number assigned in y,
to the environment. Terms and guards are interpreted as usual, exept that guard wla
indicates that the target state of the transition having wla as guard was last active
and nab indicates that the region of the target state of the transition having nab
as guard was not active before (can only be understood after working through the
whole semantics; nevertheless for the most paricipants its meaning is not impor-
tant).

Furthermore, states may also have internal transitions, where the source and target
are the same.

See also [1] for explanations. There also deferal of events and do-actions are con-
sidered. These are not relevant for this project. Every student should have a look at the
first 4 section of [1], but do not have to understand everything.

5.2 Semantic Model

For a binary relation R ⊆ M1 ×M2 abd M̈1 ⊆ M1, we define M̈1.R = {m2 ∈ M2 |
(m1,m2) ∈ R}. For a trinary relation ;⊆ M1 × Act × M2 we write m1

a
; m2 for

(m1, a,m2) ∈;, and write a
; for the binary relation {(m1,m2) | m1

a
; m2}, thus

{m1}.
a
;= {m2 ∈ M2 | m1

a
; m2}. Furthermore, relation ; is deterministic, if

∀m ∈ M1, a ∈ Act : |{m}. a
; | ≤ 1.

Our semantical model are ν-automata, which are explained in the following:

Definition 1 (ν-automaton). A ν-automaton with respect to Act is a tuple (S, Si,−→
), where S is its set of states, Si ⊆ S is its set of root states, and −→⊆ S×Act×P(S)
is its hypertransition relation. (we restrict to those where for every state and action an
outgoing transition exists).

A ν-automaton is concrete if it has exactly one root state, i.e., |Si| = 1, and exactly
one transition per label and per source state.

An example of a ν-automaton is depicted in Figure 2.

�������� ��������

�������� ��������
��������

res

0 1

23

//oo//
res

��
mod --

res,mod

vv

res

[[

mod

��
mod

SS
MMMMMMMM

res

LL
qqqqqqqq
mod

kk

mod

77

�������� ��������

�������� ��������
��������

res

0 1

23

//oo mod --
mod

vv

mod

��
mod

SS
MMMMMMMM

qqqqqqqq
mod

kk

mod

77

Fig. 2. Two ν-automata over the possible transition labels from {mod, res}. A hypertransition
is illustrated by an arrow with a single starting point, a single label and several targets. A set of
hypertransitions sharing the same targets and label are combined using a small circle.

Definition 2 (ν-refinement). The ν-automaton (S1, S
i
1,−→1) ν-refines the ν-automaton

(S2, S
i
2,−→2) if there is a ν-refinement R, i.e., a relation R ⊆ S1 × S2 such that

– for every more concrete root state there is an related abstract root state, i.e., ∀si
1 ∈

Si
1 : ∃si

2 ∈ Si
2 : (si

1, s
i
2) ∈ R, and

– for any pair of related states (s1, s2) ∈ R and any event e ∈ Act any more concrete
transition can be matched by an abstract one such that the states of the two target
sets can be pairwise related, i.e., ∀Θ1 ∈ {s1}.

a−→1: ∃Θ2 ∈ {s2}.
a−→2: (∀s′

1 ∈
Θ1 : ∃s′

2 ∈ Θ2 : s′
1Rs′

2) ∧ (∀s′
2 ∈ Θ2 : ∃s′

1 ∈ Θ1 : s′
1Rs′

2).

For example, the ν-automaton on the right hand side of Figure 2 is a ν-refinement
of the ν-automaton on the left hand side of the same Figure.

Semantics The semantics of a state machine is declared via a transformation into a
ν-automaton. This transformation is given in [1], where some minor changes have to
be made in order to handle the random-operator (will be explained by discussion with
Harald). Note that we do not expect that this transformation will be understood by
reading the paper, i.e., intensive discussion with Harald should take place. An example
of the semantic is illustrated in Figure 3. The ν-automaton on the left of Figure 2 is the
semantics for the state machine on the left hand side of Figure 3, with label “res [true]
x := 1” changed to “res [true] x:=rand(0, 1)”. The ν-automaton on the right of Figure
2 is the semantics of the state machine, where furthermore the transition labelled “res
[true] x:=0” is deleted.

res [true] x:=1

��
res [true] x:=0 99

mod [x<n] x:=x+1

YY mod [x>0] x:=x−1
yy

�������� ��������

�������� ��������

0 1

23

//
res

��
res

��res,mod
--

res,mod

mm

resPPPP

ggPPPPPPPPP mod

��
res,mod

SS

res

OO

resnnnn

77nnnnnnnnn

mod

mm
mod --

Fig. 3. A simple state machine having variable x. The state machine, which is depicted at the
left hand side, reacts on event res in which case the variable is reset to a not yet fixed value 0
or 1. Furthermore, the state machine reacts also on event mod in which case x is incremented or
decremented by 1, which is only possible if the value of x remains in {0, ..., n}. The initial value
of x is 0. Its semantics for n = 3 in terms of transition system is depicted on the right hand side
the state machine. The value of n is written inside each transition system state.

5.3 Property setting

The property language is the modal mu-calculus:

φ ::= X | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | µX.φ | νX.φ

The dual formula is obtained by replacing ∧ with ∨, 〈a〉 with [a], µ with ν, and vice
versa.

In order to define the satisfaction relation mu-calculus formulas are translated into
tree automaton [2]:

Definition 3 (Tree automata). An alternating tree automaton is a tuple (Q, δ,Θ), where

– (q ∈)Q is a finite, nonempty set of states
– δ is a transition relation, which maps an automaton state to one of the following

forms, where q, q1, q2 are automaton states: q | q1∧̃q2 | q1∨̃q2 | 〈α〉q | [α]q and
– Θ:Q → IN an acceptance condition with finite image.

µ-calculus formulas are transformed into tree automata as follows, where we as-
sume that every variable X is under the scope of µ.X or ν.X , and no variable is bound
twice: formulas different from µX.φ, νX.φ, X are straightforwardly translated. µX.φ
(respectively νX.φ, X) becomes automaton state X with δ(X) is the automaton state
corresponding to φ. Function Θ is everywhere equal to 0 except on X states, here the
value is determined by the alternating depth (counting in a path starting in µX.φ how
often the binders switch from µ to ν, respectively from ν to µ, where one is added if the
last binder is a µ operator. For examples: If νZ.µY.((µX.X)∨(νV.V), then Θ(X) = 1,
Θ(V) = 0, Θ(Y) = 1, and Θ(Z) = 2.

The satisfaction relation is defined as follows:

Definition 4 (Satisfaction).

– Finite satisfaction plays for ν-automaton D = (S, Si,−→) and alternating tree
automaton A have the rules and winning conditions as stated in Table 1. An infinite
play Φ is a win for Player I iff sup(map(Θ,Φ[2]))] is even; otherwise it is won by
Player II.

– The model D satisfies the automaton A in state (s, q) ∈ S×Q, written as (D, s) |=
(A, q) iff Player I has a strategy for the corresponding satisfaction game between
D and A such that Player I wins all satisfaction plays started at (s, q) with her
strategy.

q′: the next configuration is (s, q′)
q1∧̃q2: Player II picks a q′ from {q1, q2}; the next configuration is (s, q′)
q1∨̃q2: Player I picks a q′ from {q1, q2}; the next configuration is (s, q′)
〈a〉q′: Player II picks S̈′ ∈ {s}. a−→; Player I picks s′ ∈ S̈′; the next configuration is (s′, q′)
[a]q′: Player II picks S̈′ ∈ {s}. a−→ and s′ ∈ S̈′; the next configuration is (s′, q′)

Table 1. Moves of satisfaction game at configuration (s, q). Satisfaction plays are sequences of
configurations generated thus

6 Modules

Here the different modules together with the SWS-points we have in mind are presented.
The groups can assign tasks between the members such that participants can obtain
enough SWS-points to get a Schein over either 4 or 8 SWS at the end. Note that the
SWS-points are only for orientation and depend in particular on the task promised in
the working plan. Then we decide how much SWS the students get for the planned
tasks.

6.1 Coordinator

A person responsible for delivering the common parts like the working plan. He/she has
to write the common documentations and give the common presentation. Here common
means the non single module dependent issues.

Value: 2-4 SWS

6.2 Data structure implementation

The common data structure has to be implemented with efficient algorithms, hence good
underlying structures have to be used and in particular presented in the documentation.
Further, a file representation of this structure (including save-to-file and load-from-file
operations) must be specified and implemented.

Value: 4-6 SWS

6.3 Input of core state machines

Implementation of graphical input facilities (GUI) for core state machines. Modifica-
tions should be possible at any time. Furthermore, concurrent execution and thread safe
programming should take place.

Value: 8-16 SWS

Optional:
Implementation of graphical input facilities for ν-automata.
Value: +2 SWS

6.4 Semantics

A transformation from state machines into ν-automata has to be implemented reflecting
the semantics as described in Subsection 5.2.

Value: 8 SWS
Optional:
The following interactive simulation should be implemented: A user may give an

action, where the system executes a corresponding allowed transition. If there is more
than one possibility a random one should be chosen. If no such allowed transition exists,
the user is informed of the absence. A user may save the current simulation point. A
user may switch back to a saved simulation point.

A user may terminate its examination, in which case his/her simulation may be
displayed via a labeled tree.

The steps can also be highlighted those activities inside the corresponding core state
machine

Value: 2-6 SWS

6.5 Testing

Data test instances have to be provided, enabling testing for the different groups. The
implemented code has to be additionally tested by the Tester. Furthermore, a benchmark
has to be provided and runtime examination has to be made.

Value: 2-4 SWS

6.6 Model checking

This task is alrady assigned (for one group).
Optional:
Input facilities for the modal µ-calculus, a transformation from the mu-calculus

into tree automata, and a satisfaction check between a µ-calculus and a tree automata
has to be implemented. The satisfaction check should yield true (if the ν-automaton
satisfies the formula), false (if the ν-automaton satisfies the dual formula), or undefined
(otherwise) as output.

Value: 8 SWS

6.7 Refinement check

Implementation of an algorithm for refinement check via greatest fixpoint calculation
(ask Harald for that technique).

Value: 2 SWS

7 Advice

7.1 About groupwork

To learn something about successful groupwork regarding software projects, the follow-
ing essay is recommended, not only for this project but for all future group assignments:

http://www.csc.calpoly.edu/∼sludi/SEmanual/TableOfContents.html

7.2 Tool recommendations

The implementation has to be made in JAVA SE 5.0 We recommend to use a programming envi-
ronment like
eclipse (http://www.eclipse.org/).
We expect reasonable comments in your code explaining non-trivial parts of code. We recom-
mend to make use of
javadoc (http://java.sun.com/j2se/javadoc/).
We recommend to use lint4j for code optimization. Also DOT can be used for graphs illustrations.

7.3 Presentation

Here are a view tips about presenting you probably already know, but experience shows you can
never say it often enough:

– be prepared – do not just hope everything will work, make sure it will (as good as you can)
– know your work – learning the speech by heart is not enough, you have to know what you

are talking about
– stay focussed – don’t get carried away by unnecessary details
– know your audience – do not waste time for telling things everyone already knows, but do

not leave important things out the audience probably does not know
– rehearse your presentation before you give it – not only will it save you a lot of embarrass-

ment, without rehearsing it you will not know what time it takes to give it
– rehearse your presentation before you give it – we mean it!

7.4 Subversion
– Access to the Subversion repository

In order to get an account for the projects repository an account for the RBG-Rechnernetz is
required. The corresponding user name should be included when enlisting in the list of par-
ticipants on October 20th. If you were prevented to do so for any reason, please send a mail
with the missing information to hsc@informatik.uni-kiel.de as soon as possible.
The passwords will be handed out on Monday, October 23th. With your password and user-
name you will be able to visit https://snert.informatik.uni-kiel.de. Atten-
tion: please accept the ssl certificate although it is issued by an unknown authority.

– There is a good book ”Version Control with Subversion” at
http://svnbook.red-bean.com/

– Initial Checkout
Checking out a repository creates a copy of projects repository on your local machine in di-
rectory smile. Attention: please accept the ssl certificate although it is issued by an unknown
authority. This working copy contains the latest revision of the repository that you specify
on the command line:

svn checkout https://snert.informatik.uni-kiel.de/svn/smile

After that, entering subversion command line client commands within the working directory
does not require the url anymore.

– The typical work cycle using Subversion
• Update your working copy with svn update
• Change, add, delete, copy and move files with svn add <file>, svn delete

<file>, svn copy <file> and svn move <file>
• Examine your changes with svn status, solve conflicts and merge others’ changes

into your working copy svn update
• Commit your changes with short comment svn commit -m "<your comment>"

7.5 Code Reuse

In the previous semester there was a similar project. Its task can be downloaded from
http://www.informatik.uni-kiel.de/inf/deRoever/SS06/Praktikum/. It is
allowed to reuse code from that project but you should be careful and tell us. It can be found at
https://snert.informatik.uni-kiel.de/simdim.zip. However, note that there
is a modified task now and you are responsible for possibly existing bugs or missing comments
in the reused code.

References

[1] H. Fecher and J. Schönborn. Uml 2.0 state machines: Complete formal semantics via core
state machines. In FMICS, Lecture Notes in Computer Science. Springer, 2006. Accepted
for publication.

[2] Th. Wilke. Alternating tree automata, parity games, and modal µ-calculus. Bull. Soc. Math.
Belg., 8(2):359–391, May 2001.

