Notations:

An ω -sequence (or ω -word) over A is a function from ω into A. We also use the notation $(a_i)_{i\in\omega}$ to denote the ω -sequence a such that $\forall i\in\omega$. $a(i)=a_i$. A finite sequence w (or finite word) over A is a function from $\{0,\cdots,n-1\}$ into A; n is the length of w. We use the notation $a_0\cdots a_{n-1}$ to denote the finite sequence w of length n such that $\forall i\in\{0,\cdots,n-1\}$. $w(i)=a_i$. Given an ω -sequence $\alpha=(a_i)_{i\in\omega}$, given $i,j\in\omega$, $\alpha(i,j)$ denotes the finite sequence $a_i\cdots a_{j-1}$. Notice that if $j\leq i$ then $\alpha(i,j)$ is the empty sequence which we denote by ϵ .

Chapter 3

Operational Specification

Usually also other properties than invariance properties are of interest when protocols and reactive systems are considered. For instance, if a communication protocol is considered then it is important to know that every message is eventually delivered.

Automata accepting ω -words, so-called ω -automata, represent a powerful tool for specifying a large class of systems and their properties.

3.1 Büchi Automata

Definition 3.1 [BÜCHI AUTOMATA]

A Büchi automaton \mathcal{B} over alphabet A is given by a quadrupel $(Q, q_0, \longrightarrow, F)$, where

- Q is a finite set of control locations.
- $q_0 \in Q$ is the initial control location.
- $\longrightarrow \subseteq Q \times A \times Q$ is the transition relation of \mathcal{B} . We write $q \stackrel{a}{\longrightarrow} q'$ instead of $(q, a, q') \in \longrightarrow$.
- $F \subseteq Q$ is the set of accepting control locations.

\Diamond

Definition 3.2

- A run ρ of $\mathcal{B} = (Q, q_0, \longrightarrow, F)$ over the ω -word α is an ω -sequence in Q^{ω} such that $\rho(0) = q_0$ and $\forall i \in \omega \cdot \rho(i) \xrightarrow{\alpha(i)} \rho(i+1)$.
- A run ρ is called accepting, if $\inf(\rho) \cap F \neq \emptyset$, where $\inf(\rho) = \{q \in Q \mid \exists^{\omega}i \cdot \rho(i) = q\}$.

- $\alpha \in A^{\omega}$ is accepted by \mathcal{B} , if there exists an accepting run of \mathcal{B} over α .
- The language of \mathcal{B} , denoted by $\mathcal{L}(\mathcal{B})$ is the set of all ω -words accepted by \mathcal{B} .
- An ω -language $L \subseteq A^{\omega}$ is recognized by \mathcal{B} , if $L = \mathcal{L}(\mathcal{B})$; it is Büchi recognizable, if there exists a Büchi automaton that recognizes it.

 \Diamond

Definition 3.3 Given a Büchi automaton $\mathcal{B} = (Q, q_0, \longrightarrow, F), q, q' \in Q$, and $w \in A^*$. Define $q \xrightarrow{w} q'$ and $W_{qq'}$ as follows:

- $q \xrightarrow{w} q'$ iff $\exists l_0, \dots, l_n \in Q$ such that n = |w|, $l_0 = q$, $l_n = q'$, and $\forall i \in \{0, \dots, n-1\}$ · $l_i \xrightarrow{w(i)} l_{i+1}$.
- $\bullet \ W_{qq'} = \{ w \in A^* \mid q \xrightarrow{w} q' \}.$

 \Diamond

Lemma 3.1 Let \mathcal{B} be a Büchi automaton. Then,

$$\mathcal{L}(\mathcal{B}) = \bigcup_{q \in F} W_{q_0 q} W_{qq}^{\omega}.$$

Proof:

$$\alpha \in \mathcal{L}(\mathcal{B}) \iff \exists \text{ an accepting run over } \alpha$$

$$\iff \exists \rho \in Q^{\omega} \cdot \exists q \in F \cdot \rho(0) = q_0 \land$$

$$\exists (j_i)_{i \in \omega} \in \omega^{\omega} \cdot \forall i \in \omega \cdot (j_{i+1} > j_i \land \rho(j_i) = q \land q_0 \xrightarrow{\alpha(0,j_0)} q \land q \xrightarrow{\alpha(j_i,j_{i+1})} q)$$

$$\iff \exists q \in F \cdot \exists (j_i)_{i \in \omega} \in \omega^{\omega} \cdot (\forall i \in \omega \cdot j_{i+1} > j_i) \land \alpha(0,j_0) \in W_{q_0q} \land$$

$$\forall i \in \omega \cdot \alpha(j_i,j_{i+1}) \in W_{qq}$$

$$\iff \alpha \in \bigcup_{g \in F} W_{q_0q} W_{qq}^{\omega}$$

Definition 3.4 A word $\alpha \in A^{\omega}$ is called ultimately periodic, if there exists an increasing ω -sequence $(j_i)_{i \in \omega} \in \omega^{\omega}$ such that $\forall i \in \omega \cdot \alpha(j_i, j_{i+1}) = \alpha(j_{i+1}, j_{i+2})$, in other words there exist $u, v \in A^*$ such that $\alpha = uv^{\omega}$.

Proposition 3.2

1.) Let \mathcal{B} be a Büchi automaton. Then, $\mathcal{L}(\mathcal{B}) \neq \emptyset$ iff $\mathcal{L}(\mathcal{B})$ contains an ultimately periodic word.

2.) The emptiness problem for Büchi automata is decidable.

Proof:

- 1.) The implication from right to left is immediate. Thus, let us consider the other one. Since $\mathcal{L}(\mathcal{B}) = \bigcup_{q \in F} W_{q_0 q} W_{qq}^{\omega}$, if $\mathcal{L}(\mathcal{B}) \neq \emptyset$ then there exists $q \in F$ such that $W_{q_0 q} \neq \emptyset$ and $W_{qq} \neq \emptyset$. Let $u \in W_{q_0 q}$ and $v \in W_{qq}$, then $uv^{\omega} \in \mathcal{L}(\mathcal{B})$.
- 2.) Follows from the fact that $W_{qq'}$ is a regular language in A^* .

Lemma 3.3

- 1.) If $V \subseteq A^*$ is regular then V^{ω} is Büchi recognizable.
- 2.) If $V \subseteq A^*$ is regular and $L \subseteq A^{\omega}$ is Büchi recognizable then $V \cdot L$ is also Büchi recognizable.
- 3.) If L_1 and L_2 are Büchi recognizable then $L_1 \cup L_2$ and $L_1 \cap L_2$ are also Büchi recognizable.

Proof:

1.) Since for every regular language V given by an automaton \mathcal{A} we can construct an automaton \mathcal{A}' such that no transition in \mathcal{A}' leads to the initial control state, $\epsilon \notin \mathcal{L}(\mathcal{A}')$, and $\mathcal{L}(\mathcal{A}')^{\omega} = V^{\omega}$, we can assume without loss of generality that V is given by an automaton $\mathcal{A} = (Q, q_0, \longrightarrow, F)$ such that $\forall q \in Q \cdot q \not\longrightarrow q_0$ and $q_0 \notin F$.

Let $\mathcal{B} = (Q \setminus F, q_0, \longrightarrow_{\mathcal{B}}, \{q_0\})$ such that for all $q, q' \in Q \setminus F$ and $a \in A$

$$q \xrightarrow{a}_{\mathcal{B}} q' \Longleftrightarrow ((q \xrightarrow{a} q' \land q' \not\in F) \lor \exists q'' \in F \cdot q \xrightarrow{a} q'' \land q' = q_0).$$

We prove $\mathcal{L}(\mathcal{B}) \subseteq V^{\omega}$ and leave $V^{\omega} \subseteq \mathcal{L}(\mathcal{B})$ as exercise.

Let $\alpha \in \mathcal{L}(\mathcal{B})$. Then, there exists a run ρ over α and an increasing sequence $(j_i) \in \omega^{\omega}$ with $j_0 = 0$ and $\forall i \in \omega \cdot \rho(j_i) = q_0 \land \forall k \in \{j_i + 1, \dots, j_{i+1} - 1\}$. $\rho(k) \neq q_0$. We prove $\alpha(j_i, j_{i+1}) \in V$, for every $i \in \omega$.

Thus, let $i \in \omega$. Since ρ is a run of \mathcal{B} , we have $\forall k \in \{j_i, \dots, j_{i+1}-1\} \cdot \rho(k) \xrightarrow{\alpha(k)} \beta(k+1)$. By the assumption on \mathcal{A} and the definition of \mathcal{B} , $\forall k \in \{j_i, \dots, j_{i+1}-2\} \cdot \rho(k) \xrightarrow{\alpha(k)} \rho(k+1)$ and $\exists q \in F \cdot \rho(j_{i+1}-1) \xrightarrow{\alpha(j_{i+1})} q$. Hence, there exists $q \in F$ such that $\rho(j_i), \dots, \rho(j_{i+1})$ is a run of \mathcal{A} over $\alpha(j_i, j_{i+1})$ and $\rho(j_{i+1}) = q$. This proves $\alpha(j_i, j_{i+1}) \in V$.

- 2.) Exercise.
- 3.) W.l.g. assume that L_1 and L_2 are given by $\mathcal{B}_i = (Q_i, q_{0i}, \longrightarrow_i, F_i)$, for i = 1, 2, with $Q_1 \cap Q_2 = \emptyset$.

Let $\mathcal{B} = (Q_1 \cup Q_2 \cup \{q_0\}, q_0, \longrightarrow, F_1 \cup F_2)$, where $q_0 \notin Q_1 \cup Q_2$ and $q \xrightarrow{a} q'$ iff either $q \xrightarrow{a}_1 q'$, or $q \xrightarrow{a}_2 q'$, or $q = q_0$ and $q_{01} \xrightarrow{a}_1 q'$ or $q_{02} \xrightarrow{a}_2 q'$. Then, it is not difficult to check that $\mathcal{L}(\mathcal{B}) = L_1 \cup L_2$.

Next, we construct a Büchi automaton \mathcal{B} such that $\mathcal{L}(\mathcal{B}) = L_1 \cap L_2$.

Let $\mathcal{B} = (Q_1 \times Q_2 \times \{0, 1, 2\}, (q_{01}, q_{02}, 0), \longrightarrow, F)$, where $F = \{(q_1, q_2, 2) \mid q_1 \in Q_1, q_2 \in Q_2\}$ and $(q_1, q_2, i) \xrightarrow{a} (q'_1, q'_2, i')$ iff $q_1 \xrightarrow{a} q'_1, q_2 \xrightarrow{a} q'_2$, and one of the following conditions is satisfied:

- (a) either $i=0,\ i'=1,$ and $q_1'\in F_1$ or i=i'=0 and $q_1'\not\in F_1,$
- (b) either i = 1, i' = 2, and $q'_2 \in F_2$ or i = i' = 1 and $q'_2 \notin F_2$, or
- (c) i = 2 and i' = 0.

It remains to prove that $\mathcal{L}(\mathcal{B}) = \mathcal{L}_1 \cap \mathcal{L}_2$. We consider the inclusion $\mathcal{L}(\mathcal{B}) \subseteq \mathcal{L}_1 \cap \mathcal{L}_2$ and leave $\mathcal{L}(\mathcal{B}) \supseteq \mathcal{L}_1 \cap \mathcal{L}_2$ as exercise.

We introduce the following notation. For i = 1, 2, 3, let Π_i denote the *i*-th projection from $Q_1 \times Q_2 \times \{0, 1, 2\}$ on Q_1 , resp. Q_2 and $\{0, 1, 2\}$.

First of all, it is not difficult to prove that ρ is a run of \mathcal{B} iff $\Pi_i(\rho)$ is a run of \mathcal{B}_i , for i = 1, 2. It remains to prove that ρ is accepting iff $\Pi_1(\rho)$ and $\Pi_2(\rho)$ are.

To do so, we prove the following property of \mathcal{B} .

For every run ρ of \mathcal{B} , and $i, j \in \omega$ with i < j, if $\Pi_3(\rho(i)) = 0$ and $\Pi_3(\rho(j)) = 2$ then there exists $k \in \omega$ with $\forall l \in \{i, \dots, k-1\}$, $\Pi_3(\rho(l)) = 0$ and $\Pi_3(\rho(k)) = 1$.

By definition of \mathcal{B} , if $\Pi_3(\rho(j)) = 2$, then $\Pi_3(\rho(j-1)) = 1$. Let $k = \min\{l \mid i < l < j, \Pi_3(\rho(l)) = 1\}$. Then, $\forall l \in \{i, \dots, k-1\}$, $\Pi_3(\rho(l)) = 0$ and $\Pi_3(\rho(k)) = 1$. \square Since by definition of \mathcal{B} , for every $i \in \omega$, if $\Pi_3(\rho(i)) = 0$ and $\Pi_3(\rho(i+1)) = 1$, then $\Pi_1(\rho(i+1)) \in F_1$, and if $\Pi_3(\rho(i)) = 2$, then $\Pi_2(\rho(i)) \in F_2$, we have $\inf(\rho) \cap F \neq \emptyset$ iff $\inf(\Pi_1(\rho)) \cap F_1 \neq \emptyset$ and $\inf(\Pi_2(\rho)) \cap F_2 \neq \emptyset$.