
Chapter 1

Timed Automata

1

In the previous chapter we choose !-words as observable behavior for untimed reactive

systems. Moreover, we choose B�uchi-automata as speci�cation formalism. Clearly, the

observable behavior of a real-time system must include timing information. This is achieved

by coupling a real-valued time with each symbol obtaining timed words.

1.1 Timed Languages

Given an alphabet �. The behavior of a real-time system corresponds to a timed !-word

over �. As we are interested in a dense-time mode, we choose the set IR

�0

of non-negative

reals as time domain.

De�nition 1.1 A time sequence � = (�

i

)

i2!

is an in�nite sequence of time values �

i

2 IR

�0

that satis�es the following conditions:

1. Monotonicity: � increases monotonically; that is, �

i+1

� �

i

, for every i 2 !.

2. Divergence: � diverges, that is, for every t 2 IR

�0

there is i 2 ! such that �

i

� t.

A timed word over an alphabet � is a pair (�; �), where � is an in�nite word in �

!

and � is

a time sequence. A timed language over � is a set of timed words over �. 3

The intuitive interpretation of a timed word (�; �) is such that at time point �

i

we observe

the symbol �

i

.

It is obvious that each timed language L induces a language of untimed words by pro-

jecting a timed word (�; �) on its �rst component.

De�nition 1.2 For a timed language L over �, Untime(L) denotes the !-language such

that

Untime(L) = f� j there exists a time sequence � with (�; �) 2 Lg

3

1

The material in this chapter is based on [AD94]

1

1.2 Clock constraints and clock evaluations

Timed automata are �nite automata extended by clocks which are real-valued variables.

Clocks are then used to constraints the possible transitions of the automaton by requiring

that a transition can only be taken when the actual values of the variables satisfy the guard

of the transition. A transition speci�es which of the clocks are reset when it is taken.

De�nition 1.3 For a set X of clock variables, the set �(X) of clock constraints � is de�ned

by

� := x � c j c � x j :� j �

1

^ �

2

;

where x 2 X and c is a constant in IQ. 3

A clock evaluation � for a set X of clock variables assigns a non-negative real value to each

clock. A clock evaluation � satis�es a clock constraint �, denoted by � j= �, if � evaluates to

true using the values given by �. Formally, we de�ne � j= � by induction on the structure of

� as follows:

� � j= x � c i� �(x) � c and � j= c � x i� c � �(x),

� � j= :� i� not � j= �, and

� � j= �

1

^ �

2

i� � j= �

1

and � j= �

2

.

For a clock evaluation � and t 2 IR

�0

, � + t denotes the clock evaluation that maps each

clock variable x to �(x) + t, and the clock evaluation t � � assigns to each clock x the value

t ��(x). For Y � X, �[Y 7! t] denotes the clock evaluation for X that assigns t to each clock

in Y and coincides with � on the rest of the clocks. We denote by 0 the clock evaluation

that assigns 0 to each clock variable.

1.3 Timed transition tables

De�nition 1.4 A timed transition tables A is a tuple (Q;Q

0

; C; E), where

� Q is a �nite set of control locations,

� Q

0

� Q is a set of initial control locations,

� C is a �nite set of clock variables, and

� E � Q � � � �(C) � 2

S

�Q is a set of transitions. A tuple (q; a; �; �; q

0

) represents

a transition from control location q to control location q

0

on input symbol a. This

transition is guarded by � and resets the clock variables in �.

3

The main assumption underlying the timed automata model is that executing transitions

happens in zero time, and hence, time can only advance when no transition is taken, that

is, when control resides at the same control location.

2

Given a timed word (�; �), the timed transition table A starts in one of its initial states

with all clocks initialized to 0. At time �

i

it takes some transition (q; a; �; �; q

0

) reading the

input �

i

, if the current values of the clock satisfy �. The e�ect of the transition is that

control jumps to location q

0

and that the value of the clocks in � become 0. Between time

�

i

and �

i+1

control remains at the same location while the value of each clock increases by

�

i+1

� �

i

. This behavior is captured by de�ning runs of timed transition tables.

From now on, for a time sequence � we de�ne �

�1

= 0. Then, we de�ne a run as follows:

De�nition 1.5 A run r = (q

i

; �

i

)

i2!

of a timed transition table A = (Q;Q

0

; C; E) is

an !-sequence of pairs of control locations and clock evaluations satisfying the following

conditions:

� Initiation: q

0

2 Q

0

and �

0

= 0 and

� Consecution: for every i 2 ! there is a transition (q

i

; �

i

; �; �; q

i+1

) 2 E such that

�

i

+ (�

i

� �

i�1

) satis�es � and �

i+1

= (�

i

+ (�

i

� �

i�1

))[� 7! 0].

3

1.4 Timed regular languages

We obtain timed B�uchi automata (TBA for short) from timed transition tables by adding

an acceptance set and de�ning an acceptance condition similar to the acceptance condition

in case of automata on !-words.

De�nition 1.6 A timed B�uchi automaton is a tuple (Q;Q

0

; C; E;F), where (Q;Q

0

; C; E)

is a timed transition table and F � Q is a set of accepting states.

A run r = (q

i

; �

i

)

i2!

of a TBA over a timed word (�; �) is called an accepting run, if

inf(r) \ F 6= ;, where inf(r) = fq j 9

!

i � q

i

= qg.

For a TBA A, the language L(A) of A consists of the timed words (�; �) such that there

exists an accepting run of A over (�; �). 3

A language L of timed words is called regular, if there exists a timed B�uchi automaton A

that recognizes L, that is, such that L(A) = L.

1.5 Properties of timed regular languages

We �rst consider some closure properties of timed regular languages.

Theorem 1.1 The class of timed regular languages is closed under �nite union and inter-

section. 2

Proof: Closure under intersection is an exercise.

The case of union is easy. It su�ces to take the disjoint union of the considered TBA's.

It is important to note that even in case of timed regular languages the number of symbols

in a �nite interval of time is not necessarily bounded. In fact, the symbols can be arbitrary

close to each other. The following example illustrates this points.

3

Example 1.1 The TBA A

conv

given in Figure 1.2 recognizes the following language:

L

conv

= f((ab)

!

; �) j 8i � �

2i+1

= i+ 1 ^ �

2i+1

� �

2i

< �

2i+3

� �

2i+2

g

2

a,x,x=1 b,y
0 1 2 3

b,y,y<1

a,x,x=1

Figure 1.1: The TBA T

conv

If we require all the time values �

i

to be multiples of some � > 0, the language accepted

by A

conv

will be empty. Thus, taking as time domain the set of non-negative reals is in-

deed di�erent from the discrete-time domain. On the other hand, timed automata do not

distinguish between reals and rational numbers.

Theorem 1.2 Let L be a timed regular language. For every word �, � 2 Untime(L) i�

there exists a time sequence � such that (�; �) 2 L and �

i

2 IQ, for every i 2 !. 2

Proof: The implication from right to left is trivial.

Consider a timed regular language L that is recognized by a timed automaton A. Let

(�; �) be a timed word in L. We construct a time sequence �

0

with �

0

i

2 IQ and (�; �

0

) 2 L.

Let � be a rational number such that for every constant c appearing in a constraint in A

there exists n 2 ! such that c = n � �. Let �

�1

= �

0

�1

= 0. We de�ne �

0

i

, for i � 0, recursively.

If there exists j < i such that �

i

� �

j

= n � �, for some n 2 !, then �

0

i

= �

0

j

+ n � �. Otherwise,

choose �

0

i

such that for every j < i and n 2 !, �

0

i

� �

0

j

< n � � i� �

i

� �

j

< n � �. It can be

proved that such a �

0

i

must satisfy a �nite set of equation of the form �

0

i

� c � �+ c

0

, where

�2 f<;�g and c; c

0

2 IQ. Such a set of equations either admits no solution or a solution set

that contains an interval in IR

�0

. Since IQ is dense in IR, we �nd a solution in IQ. It can then

be proved that if there exists a run that accepts (�; �) then there exists a run that follows

the same transitions that accepts (�; �

0

).

1.6 The emptiness problem for timed automata

In this section we present an algorithm by Alur and Dill for checking emptiness of timed

automata [AD94].

1.6.1 Restriction to integer constants

Lemma 1.3 Let A be a timed transition table, (�; �) a timed word, and t 2 IQ

�0

. Then,

(q

i

; �

i

)

i2!

is a run of A over (�; �) i� (q

i

; t ��

i

)

i2!

is a run t �A over (�; t � �), where t �A is the

timed transition table obtained from A by multiplying all constants in the guards by t. 2

4

1.6.2 Clock regions

For any t 2 IR

�0

, fract(t) denotes the fractional part of t, and btc denotes its integral part.

De�nition 1.7 Let A = (Q;Q

0

; C; E) be a timed transition table. For each x 2 C, let c

x

be the largest integer c such that the constraint x � c or the constraint c � x appears in a

guard of some transition in E.

The equivalence relation � is de�ned over the set of all clock evaluation of C; � � �

0

i�

the following conditions are satis�ed:

1. For all x 2 C, either b�(x)c = b�

0

(x)c or �(x) > c

x

and �

0

(x) > c

x

.

2. For all x; y 2 C with �(x) � c

x

and �(y) � c

y

, fract(�(x)) � fract(�(y)) i� fract(�

0

(x)) �

fract(�

0

(y)).

3. For all x 2 C with �(x) � c

x

, fract(�(x)) = 0 i� fract(�

0

(x)) = 0.

The relation � is an equivalence relation.

Lemma 1.4 The relation � is an equivalence relation. 2

The equivalence class that contains valuation � is denoted by [�]. A clock region for A is an

equivalence class of clock evaluations induced by �. 3

Clock regions can be e�ectively represented by specifying

1. for every clock x, one constraint from the set

fx = c j c = 0; � � � ; c

x

g [fc� 1 < x < c j c = 1; � � � ; c

x

g [fx > c

x

g;

2. for every x and y such that c � 1 < x < c and d � 1 < y < d appear above whether

fractx < fractx, fractx = fractx, or fractx > fractx.

It is not di�cult to see that there is a �nite number of clock regions.

Given a timed transition table A = (Q;Q

0

; C; E), let

~

�(C) denote the set consisting of

constraints over C in which each variable x is only compared to constants c with c � c

x

. We

say that a clock region � satis�es a constraint � 2

~

�(C), if there exists a clock valuation

� 2 � which satis�es �. We have the following lemma.

Lemma 1.5 Let � be a clock region and � 2

~

�(C). Then, for every �; �

0

2 �, � j= � i�

�

0

j= �. 2

Given a clock region � and � � C, the region �[� 7! 0] is the region �[� 7! 0], where � 2 �.

5

1.6.3 The region automaton

In this section we de�ne a transition table R(A), called region transition table, associated to

the timed transition table A which mimics the runs of A.

To do so we de�ne the time-successor of a clock region.

De�nition 1.8 A clock region �

0

is a time-successor of a region � i� for every valuation

� 2 � there exists t 2 IR

�0

such that � + t 2 �. 3

Then, we have the following lemma.

Lemma 1.6 There is a recursive function that associates to every clock region � the set

consisting of the time-successors of �. 2

Proof: Exercise.

De�nition 1.9 For a timed transition table A = (Q;Q

0

; C; E) the corresponding region

transition table R(A) is a transition table over the alphabet of A such that

1. the states of R(A) are pairs (q; �) where q 2 Q and � is clock region,

2. the initial states of R(A) are the states in Q

0

�f[�

0

]g, and

3. ((q; �); �; (q

0

�

0

)) is an edge of A i� there exists an edge (q; �; �; �; q

0

) of A and a time-

successor �

00

of � such that �

00

satis�es � and �

0

= �

00

[� 7! 0].

3

Next we establish a correspondence between the runs of A and the runs of R(A).

De�nition 1.10 For a run r = (q

i

; �

i

)

i2!

of A we de�ne its projection �r to be the sequence

(q

i

; [�

i

])

i2!

. 3

It can easily be proved that if r is a run of A then �r is a run of R(A). the converse is,

however, in general not true, that is not every run of R(A) is a projection of a run of A.

This is the case because runs of A must satisfy the divergence condition; no such condition

is requested for the runs of R(A). To formulate such a condition we assume that every timed

automaton contains a special clock z such that z is reset by every transition. Notice that

this assumption does not restrict the class of languages recognized by timed automata. Now,

we introduce the following de�nition.

De�nition 1.11 A run �r = (q

i

; [�

i

])

i2!

of R(A) is called progressive, if the following

conditions are satis�ed:

1. for every clock x 6= z there are in�nitely many positions i 2 ! such that �

i

satis�es

x = 0 _ x > c

x

and

2. there are in�nitely many positions i 2 ! such that �

i

satis�es z > 0.

3

We will show below that progressive runs of R(A) correspond exactly to the projected runs

of A. Moreover, the following example shows that this is not case if we remove the second

condition.

6

a,x=0,x0q

Figure 1.2: Counter example

Example 1.2 2

Lemma 1.7 If �r = (q

i

; [�

i

])

i2!

is a progressive run of R(A) then there exists a time

sequence (�

i

)

i2!

such that r

0

= (q

i

; �

i

)

i2!

is a run of A and

�

r

0

= �r. 2

1.6.4 The untiming construction

Let A = (Q;Q

0

; C; E;F) be a timed automaton. By abuse of notation, we denote by R(A)

the region transition table associated to (Q;Q

0

; C; E).

Now, for a timed automaton A we can extend R(A) by an acceptance conditions to obtain

a B�uchi automaton R(A) called the region automaton of A which recognizes Untime(L(A)).

Theorem 1.8 [G] iven a timed automaton A = (Q;Q

0

; C; E;F) there exists a B�uchi au-

tomaton R(A) which recognizes Untime(L(A)). 2

Proof: An extended B�uchi automaton B = (Q

0

;Q

0

0

; E

0

) consists of a transition table and

a sequence (F

1

; � � � ; F

n

) of acceptance sets, i.e. F

i

� Q

0

. A run r of B is called accepting,

if inf(r) \ F

i

6= ;, for every i = 1; � � � ; n. It is not di�cult to sea that every extended

B�uchi automaton can be transformed into a B�uchi automaton which recognizes the same

language. Therefore, to prove the theorem it su�ces to give an extended B�uchi automaton

that recognizes Untime(L(A)).

Let B be the extended B�uchi automaton whose transition table is R(A) and which

includes the following acceptance conditions:

� the set f(q; �) jq 2 Fg,

� for every clock x 6= z, the set f(q; �) j� j= x = 0 _ x > c

x

g and

� the set f(q; �) j� j= z > 0g.

7

Chapter 2

Model-Checking for CTL

Let P be a �nite set of propositions.

De�nition 2.1 A Kripke structure is given by a triple (Q; R; �), where

� Q is a �nite of states,

� R � Q�Q is a transition relation, and

� � : Q �! 2

P

is a labeling function.

3

Computation Tree Logic (CTL) [CES86] is a temporal logic that allows to specify branching

properties of concurrent systems. It syntax is given by the following rules:

� Every proposition in P is a formula.

� If f and g are formulas then so are :f , f ^ g, 8
 f , 9
 f ,8fUg and 9fUg.

CTL formulas are interpreted aver pairs of Kripke structures and states. In order to de�ne

the interpretation of CTL formulas we need the following de�nitions:

De�nition 2.2 A path � starting at q of a Kripke structure K = (Q; R; �) is an in�nite

sequence q

0

; q

1

; : : : such that q

0

= q and (q

i

; q

i+1

) 2 R, for every i � 0.

Given a path � = (q

i

)

i�0

, we write �(j) for q

j

. 3

A path � of a Kripke structure K satis�es the formula fUg, where f and g are CTL formulae,

if there exists j � 0 such that K; �(j) j= g and K; �(i) j= g, for every i < j.

The satisfaction relation K; q j= f is de�ned on the structure of f . Thus, assume we are

given a Kripke structure K = (Q; R; �).

� K; q j= P i� P 2 �(q).

� K; q j= :f i� not K; q j= f .

� K; q j= f ^ g i� K; q j= f and K; q j= g.

8

� K; q j= 8
 f i� K; q

0

j= f , for every q

0

with (q; q

0

) 2 R.

� K; q j= 9
 f i� K; q

0

j= f , for some q

0

with (q; q

0

) 2 R.

� K; q j= f8Ug i� for every path � starting at q, � j= fUg.

� K; q j= f9Ug i� for some path � starting at q, � j= fUg.

Given a Kripke structure K and a CTL formula f , a model-checking algorithm determines

which of the states of K satisfy f , i.e. for which states q we have K; q j= f . The enumerative

model-checking alogorithm for CTL operates by labeling each state q of K by all the subfor-

mulas of f which are true in q. The algorithms works recursively on the structure of f . In

the sequel we present an enumerative model-checking alogorithm for CTL. We need �rst a

few de�nitions.

Let sub

+

(f) denote the set of all subformulas of f of the form 8f

1

Uf

2

, 9f

1

Uf

2

, 8
 f

1

,

9
 f

1

, and f

1

^ f

2

. For every g 2 sub

+

(f), let kgk denote the maximal depth of the

operators in g above i.e. k8f

1

Uf

2

k = 1, if f

1

and f

2

are propositions and k8f

1

Uf

2

k =

max(kf

1

k; kf

2

k) + 1, otherwise, and similarly for the other operators.

The enumerative algorithm works by induction on i and associates with each q 2 Q the

set of formulas g 2 sub

+

(f) with kgk such that K; q j= g. Initially, each state q is labeled

by �(q), that is, lab(q) = �(q). After termination of the algorithm we have g 2 lab(q) i�

K; q j= g, for every g 2 sub

+

(f). Here we only present how the algorithm handles a formula

of the form 8f

1

Uf

2

. The complete formulation of the algorithm is an exercise. Thus, consider

a formula 8f

1

Uf

2

and assume that for every q 2 Q and i = 1; 2, q 2 lab(f

i

) i� K; q j= f

i

.

The following procedure labels a set q with f = 8f

1

Uf

2

i� K; q j= f :

FOR q 2 Q DO

IF f

2

2 lab(q) THEN lab(q) := lab(q) [ffg

ENDIF

ENDFOR

FOR j = 1 TO jQj DO

FOR q 2 Q DO

IF f

1

2 lab(q) ^ 8q

0

2 Q � (q; q

0

) 2 R) f 2 lab(q

0

)

THEN lab(q) := lab(q) [ffg

ENDIF

ENDFOR

ENDFOR

Figure 2.1: Labeling for the 8U operator.

2.1 Model-Checking for Fair CTL

De�nition 2.3 A fair Kripke structure is Kripke structure (Q; R; �) extended with a set

F of non-empty subsets of Q. 3

9

A fair path � = (q

i

)

i�0

of a fair Kripke structure (Q; R; �;F) is a path of (Q; R; �) such that

inf(�) \ F 6= ;, for every F 2 F .

CTL formulas can be interpreted over fair Kripke structure by restricting path quanti�-

cation to fair paths. The satisfaction relation is denoted by j=

F

and de�ned as follows:

� K; q j=

F

P i� P 2 �(q).

� K; q j=

F

:f i� not K; q j=

F

f .

� K; q j=

F

f ^ g i� K; q j=

F

f and K; q j=

F

g.

� K; q j=

F

8
 f i� K; q

0

j=

F

f , for every q

0

with (q; q

0

) 2 R.

� K; q j=

F

9
 f i� K; q

0

j=

F

f , for some q

0

with (q; q

0

) 2 R.

� K; q j=

F

f8Ug i� for every fair path � starting at q, we have � j= fUg.

� K; q j=

F

f9Ug i� for some fair path � starting at q, we have � j= fUg.

We will reduce the model-checking of fair CTL to the model-checking of CTL. To do so

we introduce the following de�niton. Let K = (Q; R; �;F) be a fair Kripke structure. We

denote by K

f

= (Q; R; �

0

) the Kripke structure obtained from K be labeling every state q

with the new atomic proposition fair, if K; q j=

F

92true. Then, we have the following:

Lemma 2.1 K; q j=

F

9f

1

Uf

2

i� K

f

; q j= 9(f

1

U(f

2

^fair)). 2

Thus, by this lemma, if we can e�ectively construct the structure K

f

, then we can use

the enumerative algrithm to model-check fair CTL. Therefore, we show how to construct

K

f

. It su�ces to show that there is an algorithm that labels a state q of K by fair i�

K; q j=

F

92true. A subset Q

0

of Q is called a strongly connected component, SCC for short,

of K, if for all q; q

0

Q

0

there is a �nite sequence q

0

; � � � ; q

n

with n � 1 such that q

0

= q, q

n

= q

0

,

and (q

i

; q

i+1

) 2 R, for i < n. An SCC is called fair, if it conatins a state in F , for every

F 2 F . We say that an SCC Q

0

is reachable from q, if there is a state q

0

2 Q

0

and a �nite

sequence q

0

; � � � ; q

n

with n � 1 such that q

0

= q, q

n

= q

0

, and (q

i

; q

i+1

) 2 R, for i < n. Then,

we have the following lemma:

Lemma 2.2 K; q j=

F

92true i� there is a fair SCC that is reachable from q. 2

The following algorithm labels a state q with fair i� K; q j=

F

92true:

10

Determine the set fC

1

; � � � ; C

n

g of all fair maximal SCC's;

FOR q 2 Q DO

IF 9i � n � q 2 C

i

THEN lab(q) := lab(q) [ffairg

ENDIF

ENDFOR

FOR j = 1 TO jQj DO

FOR q 2 Q DO

IF 9q

0

2 Q � (q; q

0

) 2 R ^ fair 2 lab(q

0

)

THEN lab(q) := lab(q) [ffairg

ENDIF

ENDFOR

ENDFOR

Figure 2.2: The labeling algorithm for j=

F

92true.

11

Bibliography

[AD94] R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126, 1994.

[CES86] E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic veri�cation of �nite state

concurrent systems using temporal logic speci�cations. ACM Transactions on Pro-

gramming Languages and Systems, 1986.

12

