
Problems with software production

ESSENCE AND ACCIDENTS | BROOKS' POINT

OF VIEW

The case of hardware

� Recall the de�nition of the performance-price factor

on transparency 24:

performance-price factor

def

=

time to perform 10

6

additions � cost of CPU

and main memory

� Over the past 30 years hardware has become cheaper

and faster | the performance-price factor has

decreased by an order of magnitude six times!

� Will this trend continue?

69

� No, due to constraints of physical nature no more

than 2 such order of magnitude decreases are

anymore possible.

� Why?

{ The speed of light sets an upper limit to the

propagation speed of electro-magnetic waves.

Consequently, the only way to move forward is

miniaturization of chips

{ An electron can travel along a path as narrow as

3 atoms but not less narrow than that, because

it then strays to an adjacent path.

{ Putting paths too closely together leads to

interference between paths.

� Consequently there are intrinsic laws of nature

preventing computers from becoming arbitrarily fast

or arbitrarily small.

CRITIQUE: The conclusion seems to be correct.

However, possibly altogether di�erent principles of

building computers may lead to progress on this issue.

For nature developed its own super-computer: the

70

human brain, and isn't that by far more e�cient than

present day hardware in size and speed?

71

PROBLEMS WITH SOFTWARE PRODUCTION:

BROOKS' POINT OF VIEW

� Software is essentially conceptual, i.e. an artifact,

and therefore non-physical (although it is of course

always stored on a medium). So, super�cially, any

increase in productivity and quality seems to be

possible.

� Brooks, in his 1986 paper \No silver bullet", claims

such increases are only possibly to a very limited

extent.

The \silver bullet" in the title of Brooks' article

refers to the recommended way of slaying

werewolves, otherwise perfectly normal human

beings who suddenly turn into wolves. Brooks'

line of inquiry is to determine whether a similar

silver bullet can be used to solve the problems

of software. After all, software usually appears

to be innocent and straightforward, but like a

werewolf, software can be transformed into

72

something horrifying, in the shape of late

deadlines, exceeded budgets, and residual

speci�cation and design faults not detected

during testing.

� Brooks argues that, analogous to the limits to

hardware speed and size, there are inherent problems

with current techniques of software production that

can never be solved.

� He distinguishes between 4 essential problems with

such techniques, called essence | the di�culties

inherent in the intrinsic nature of software |, and

accidents, the di�culties that can be overcome

today which are not inherent in software production.

� These 4 essential problems are discussed below.

They are:

{ the complexity of software

{ its conformity

{ its changeability

{ its invisibility (or rather invisualizability)

73

Complexity of software

The problem:

� Take an automaton with 10 states and consider the

parallel composition of 30 of such automata. This

results in a product automaton of 10 " 30 states |

that is, more states than the number of electrons

within our universe!

� Consider now the INTERNET. Certainly only 30

computers operating in parallel is chicken feed |

many many more are operating in parallel! As we

saw above the complexity of the product automaton

is exponential in the number of constituting

automata. Consequently, a description of the

INTERNET using an enumeration of in principle

possible states is COMPLETELY IRREALISTIC.

What can be done about this?

74

� An analysis using product automata from automata

theory may NOT be the appropriate one to analyze

the parallel composition of programs. After all,

human beings operate in parallel, so Darwin's law

\survival of the �ttest" dictates they do so e�ciently

| but NOT by enumerating (invisible) state

changes inside human beings and then constructing

the product space!

� As possible solution so-called compositional

speci�cation methods have been suggested.

These yield (formal) speci�cations of processes

regardless of the environment these processes

operate in, or, under certain minimal assumptions

about their environment.

� Using compositional speci�cation methods, the

parallel composition of processes can be speci�ed

using the conjunction of the speci�cation of the

separate processes. Hence the complexity of this

description is linear, rather than exponential, in the

number of processes.

� However, using de Morgan's law about the

75

distribution of disjunctions over conjunctions such

a linear description may still, in the extreme, lead

to an exponential number of separate cases to be

considered. So what did we gain?

� Return to the analogy with mankind, above. What

other (wo)men observe are not the state changes

inside their fellow human beings but rather changes

in their (inter)faces or attitudes from which a lot

of local internal changes have been eliminated.

� Similarly, compositional speci�cations record

changes in interfaces between programs (or

processes), i.e. the change of externally (i.e. to

other programs) visible quantities, and NOT the

change in internal quantities s.a. local variables,

local channels and the like. Also compositional

speci�cations express the condition under which

such external changes occur.

� The latter is extremely important. For de Morgan's

law still applies w.r.t. distributing disjunctions inside

(compositional) speci�cations over conjunctions

76

between speci�cations, still resulting in a, hopefully

considerably diminished, but still exponential

number of cases to be considered. However, due

to the fact that compositional speci�cations also

express the conditions under which externally visible

changes occur, it becomes usually immediately

obvious that only a few of such combinations of

externally visible changes (inside separate processes)

actually occur, i.e. are consistent | one hopes

at least so few that the number of consistent

combinations has linear complexity.

� The assumption behind this phenomenon is that

communicating computers, operating in parallel, are

invented by man, and, since mankind cannot cope

with exponential complexity, anything man-made

which works and consists of parallel components

must somehow be possible to characterize using a

very much lower than exponential complexity in the

number of processes.

� The compositionality paradigm above has been

mentioned in order to explain that it may be possible

77

(in the further future) to characterize the complexity

of man-made networks of processes by a very much

lower than exponential complexity (in the number

of processes), since these networks are man-made

artifacts.

78

Conformity of Software

� Example: A manually controlled gold re�nery is

to be computerized. A computer will send the

necessary control signals to the components of the

existing plant, instead of using humanly operated

levers and buttons.

{ The task of the software development team is to

construct a product interfacing with the existing

plant.

{ I.e., THE SOFTWARE MUST CONFORM TO

THE PLANT, NOT THE PLANT TO THE

SOFTWARE.

This is an example of Brooks' style conformity.

� What if a brand new computerized gold re�nery were

to be constructed by a team in which mechanical,

metallurgical and software engineers cooperate?

In practice, it is considered easier to make the

software interface conform to the other components,

79

rather than change the way these have been

con�gured in the past.

� The problems caused by this forced conformity is

not due to the structure of the software itself but by

the externally imposed structure on, and by, their

interfaces. Hence its complexity cannot be removed

by improving the software process.

CRITIQUE:

� It is said that software systems are the most complex

constructions ever built by man. This is not said of

the control of plants. Hence their control cannot be

so terribly complicated.

� Furthermore, the fallacy underlying the gold re�nery

example is a common one. This example extends to

control of arbitrary plants. Now it is simply NOT

TRUE that the structure of such plants is calculated

by control engineers. There is no such thing!

� Their structure is mainly based upon empirical

80

knowledge, and only very partially on mathematics

at all!

In reality, the design of an existing successful plant

is taken and then extrapolated by small steps to

�nd out which extensions can take place, leading to

a balanced design which functions indeed.

� THERE SIMPLY DOESN'T EXIST ANY KNOWN

BODY OF MATHEMATICAL KNOWLEDGE in

which constructions of arbitrary complexity can

be calculated, or, using which one can synthesize

implementations from speci�cations of arbitrary

complexity!

� That such could be done is a typical fallacy assumed

by post-modern clients (politicians, planners) in the

last quarter of this century, as testi�ed by:

{ the DISASTER of constructing the

\Klappbr�ucke" over the \Kieler F�orde"

{ and the many other software DISASTERS, e.g.,

concerning the construction of the Denver airport

automatized luggage control system, or that

81

concerning the USA civil airplane surveillance

and routing system, mentioned above (a journal

exists which is devoted to listing these software

disasters), and so on.

82

Changeability of Software

� It is unreasonable to ask a civil engineer to move

a bridge over 100 miles, or to rotate it through

90

o

, but it is perfectly acceptable to tell a software

engineer to rewrite half an operating system over a

5-year period.

� Now, software engineers are well aware that, in the

long run, extensive maintenance is unwise and that

rewriting the product from scratch will sometimes

prove to be less expensive. Nevertheless, clients

frequently demand major changes to software.

� As Brooks points out, there are always pressures to

change (and develop) existing software. This is an

essential, not an accidental property of the software

development process; after all, it is easier to change

software than, say, the hardware on which it runs;

that is the reason behind the terms SOFTware and

HARDware.

83

� There are 4 reasons why useful software will always

undergo change:

1. Software is a model of reality, and reality changes.

2. If software is useful, there are pressures (chie
y

from satis�ed users) to change the functionality

of the product BEYOND WHICH IS FEASIBLE

IN TERMS OF THE ORIGINAL DESIGN.

3. Software is so much easier to change than

hardware.

4. Successful software lives far beyond the hardware

for which it is written | it has to be modi�ed to

some extent to run on the new hardware.

Hence, it is part of the ESSENCE of software that it

has to be changed, and this inexorable and continual

change has a deleterious e�ect on its quality.

CRITIQUE: NONE. Changeability of software is

inescapable, one of its most essential properties.

84

Invisibility of Software

� Brooks' fourth major problem with software is that

it is

\invisible and unvisualizable"

Example: Obtain a 150-page listing of object code

and try to modify aspects of it.

� In contrast, architects build scale models or make

blueprints, chemists build models of molecules,

plastic surgeons use the computer to show their

clients how their faces will look like after surgery

(and recovery). VLSI chips are represented by

various kinds of schemata, at di�erent levels of

abstraction.

� Now visualizations can be made of aspects of

software, i.e., control
ow, data
ow, illustrating

dependencies between modules, or using timing

diagrams to depict causality over time in a product.

85

However, as the critique goes, the resulting graphs

are not planar, let alone, hierarchical. They can

only depict a subject of the product in visually

acceptable fashion.

� The main critique here on such visual

representations is that diagrams cannot embody

EVERY aspect of the product | its object code

must always be consulted to analyze its e�ciency,

e.g. | nor is there a generally accepted way to

determine what's missing from such diagrams.

CRITIQUE:

� Although the above is true, it's also the most dated

one concerning essential problems with improving

quality and e�ciency of development of software.

E.g., David Harel's STATEMATE constitutes a

major breakthrough in constructing a visually

attractive executable speci�cation of software in the

area of real-time embedded systems (this system will

be subject of the \Fortgeschrittenen-Praktika" of

my chair, coming semesters), which is accepted by

86

the industries for which it is built (mainly aerospace

industry).

87

Conclusion of Brooks' \No silver bullet"

� Brooks makes a distinction between the essential

problems in software production | called their

essence | and accidental problems which can be

overcome using some new software tool.

� Consequently, e.g. timesharing, the UNIX

Programmer's Workbench, ADA, software

development environments, proofs of correctness,

object-oriented design, expert systems, new software

engineering techniques, are all classi�ed as solving

only accidental problems.

� This is so because they do not lead to an order

of magnitude (10 x) improvement in quality and

productivity within � 5 years.

� Instead, the past 20 years have shown a steady

productivity increase of 6 % per year in software

production, that is, a doubling of productivity in 12

88

years (but not of its quality - see e.g. WINDOWS

95).

� Brooks concludes that an order of magnitude

increase, i.e. a \silver bullet" is unlikely.

CRITIQUE:

� Brooks' conclusion seems to be still right;

comparatively speaking, building a 2-litre-fuel-

consumption-per-100-kilometres car seems a very

unlikely possibility. But that's also its main critique!

Is there really a di�erence between essential and

accidental problems in software production? Isn't it

rather the case that setting irrealistic targets is a

much more wide-spread problem (due to irrealistic

practices of politicians, managers and so on), see,

for instance the long lists of the resulting disasters

mentioned previously? And that, especially in case

of software production, targets tend to become

irrealistic because the planners involved have simply

no notion of the structure and COMPLEXITY of

the required product.

89

Life-Cycle Models

Objectives

In this Chapter you will:

� Learn about four di�erent life-cycle models, namely

the build-and-�x model, the waterfall model, the

rapid prototyping model, and the spiral model.

� Realize that the build-and-�x model should be

avoided because it costs too much.

� Appreciate that the waterfall model has many

successes, but that the product delivered to the

client may not be what the client really needs.

� Understand that the rapid prototyping model

ensures that the client's real needs are met.

� Learn when to use the risk-driven spiral model.

90

� The life-cycle model is the series of steps through

which the product progresses.

� Without a preplanned life-cycle model, the members

of the development team will work aimlessly.

The life-cycle model is like a game-plan on which all

members of a team can agree before development

commences.

91

The Build-and-Fix Model

Figure 1: Life-cycle phases of build-and-�x model

� The build-and-�x model is depicted in �g. 1, and

consists of the following:

{ The entire product is built and delivered to the

client.

{ The client points out what has to be changed,

and changes are made until the client is satis�ed.

92

{ Then the product is used productively by the

client.

� The build-and-�x model should be avoided at all

costs. This has the following reasons:

{ The high cost of making the changes which the

user requires after the complete software product

has been built.

{ For a speci�cation fault is 50 times cheaper to �x

while the speci�cation document is being drawn

up than when it is corrected during maintenance

phase, running on the client's computer.

{ The build-and-�x model does not provide

any coherent and cohesive overall structure.

Consequently maintenance becomes a nightmare.

� Consequently, the build-and-�x model is NOT

COST-EFFECTIVE over the whole lifetime of the

product.

� There is only one instance when to use the the

build-and-�x model: if the product is small and does

93

not require maintenance, i.e., for a small student

assignment (NOT FOR THIS PRACTICUM!!).

94

The Waterfall Model

Figure 2: Life-cycle phases of waterfall model

95

� The waterfall model is depicted in �gure 2 above.

� The waterfall model has been in use for more than

20 years. It de�ned for the �rst time a proper full

life-cycle of a software product. It has emerged the

hard way in the 70's after many extremely costly

mistakes made by big software companies, notably

IBM, in the 60's.

� Each of the requirements, speci�cation, planning

and design phases has been described before

(see transparencies 40{60) and is followed by a

Veri�cation Phase to be carried out by the Software

Quality Assurance team.

The role of testing and that of the SQA team have

been explained on transparencies 17{20.

� Similarly, the implementation, integration and

maintenance phases have been described on

transparencies 60{68 as is the rôle of the testing

phase after each of these phases.

� THE BASIC PRINCIPLE UNDERLYING THE

WATERFALL MODEL IS THAT, EVEN IF

96

WE DO OUR BEST AT EVERY PHASE,

THERE WILL ALWAYS EVENTUALLY

OCCUR A NEED TO BACKTRACK AND

CORRECT THE WORK OF A PREVIOUS PHASE.

97

Strengths and Weaknesses of the

Waterfall Model

� The major reason for the success of the waterfall

model is that it is DOCUMENT-driven; no phase

is deemed complete until the documentation for

that phase has been approved.

� For the primary cause of failure of many software

projects is inadequate documentation, or worse:

no documentation, or still worse:

incorrect documentation!

� Another strenght of it is that

one should try to get things right the �rst time.

However, if one fails { and such a moment always

eventually occurs { the feedback loops provide the

mechanism for correcting the situation.

� However, its main strenght is also its main weakness

in other respects: the client is provided with a

98

written speci�cation document. If it is for software

professionals di�cult to visualize the functioning of

a software product, how much more di�cult must

this be for a client, often a computer illiterate?

� In other professions this is di�erent: architects

provide scale models before starting to build, as

do engineers before manufacturing.

� Consequently, the waterfall model is less suited to

�nd out the real need of a client, as opposed to the

needs he/she says to have.

� The solution to this problem is the: Rapid

Prototyping Model.

99

The Rapid Prototype Model

Figure 3: Life-cycle phases of rapid prototyping model

100

� The rapid prototyping model will be

illustrated extensively in the case study

discussed a few pages from now. Its

main change with the waterfall model is

that there is much less emphasis on feedback loops.

This is o.a. due to the fact that due to using a rapid

prototype the requirements phase is much better

and satisfactorily executed; consequently, the rapid

prototype indeed re
ects precisely what is needed.

� A rapid prototype is a program put together quickly,

for displaying the desired (I/O) functionality to the

client so he/she can play with it until the desired

functionality has emerged, and not the functionality

which he/she stated in the beginning (during

concept exploration). Consequently, it must be

easy to modify this prototype.

� A speci�c veri�cation phase follows the Rapid

Prototype phase in which the SQA team checks

that (representatives of) the prospective users have

approved the functionality of the prototype.

101

� Since the rapid prototype re
ects

precisely what the client and user need, there

is no need for a feedback loop from the speci�caion

phase. Similarly, since the development team has

already gained insight in how to design the �nal

product from the experience of using the prototype,

a feedback loop leading from the design phase is

less likely to be needed.

� The problem with feedback loops is that they

consume valuable time, and the later in the

life-cycle a loop occurs, the more time it

consumes. By largely eliminating the need for

feedback, the rapid prototype model speeds up the

software development life-cycle.

102

The Spiral Model

� The spiral model can be used only if two criteria are

met:

{ The software to be developed should be large.

{ The product must be developed internally, e.g.,

by IBM for IBM (IBM introduced it for the �rst

time).

� The spiral model is depicted in �g. 4 below.

103

Figure 4: Life-cycle phases of spiral model

104

� The main di�erence between the rapid prototyping

model and the spiral model is that RISK ANALYSIS

takes place at every phase of it. Consequently, it is

possible to cancel the project at every phase.

� The possibility of cancellation after every phase

makes this model unworkable for software projects

contracted with an external client. For, after the

speci�cation and planning pahses, after client and

software development team have agreed and the

contract signed, any breach out of that contract

tends to lead to a lawsuit.

� In general the principle of risk analysis is an

important one. For, whether the contract is

internal or external, it is always necessary that

the client performs a detailed risk analysis before

signing a contract.

105

Case Study: Risk Analysis

� Recall our case study (on transparencies 26{27). It

is outlined on transparency 110.

� Before engaging the SRS Software Engineering

company, Mr. Chesterton consults a management

consultant Arabella Swinson regarding the risks

involved in building the management-by-objectives

product.

� \How can our risks be minimized?", he asks

� \If sales continue at the present level your

company is bankrupt within 2 years", is the reply,

\So it is essential that the product be developed.

Moreover its costs can be easily borne by you, when

re
ecting the expected increased turn-over. After

all, nobody wants to loose his/her job."

� \So you should immediately implement the

management-by-objectives schemes manually, to fall

106

back upon if the product is late or doesn't function,

and both for the region managers to get experience

in estimating sales targets for each month and for

the shop managers to learn to motivate personnel

to meet those targets".

� \You should try to negotiate penalty clauses in case

the product isn't delivered correctly on time. If SRS

doesn't agree to this, you should insist on including

a clause that no money is paid until the product has

been delivered and found to perform according to

the speci�cation document. This will speed SRS's

work up, especially in case you promise to pay a

bonus in case of early delivery."

107

Homework Assignment

� Select a life-cycle model for developing the ChocAn

product. Give careful reasons for your choice.

108

CASE STUDY: Requirements Phase

� In this case study you will:

{ Discover that rapid prototyping is an excellent

requirements technique.

{ Learn how rapid prototyping is used in practice.

{ Be warned about the potential pitfalls of rapid

prototyping.

� Recall that during the requirements phase, the

real needs of the client are being determined

(using system analysis techniques), rather than just

adopting bluntly what the client says she/he thinks

she/he needs.

� In the case study used, rapid prototyping is used to

determine the clients' requirements.

� Recall transparencies 26, 27 for our case study; its

main characteristics are:

109

� OUTLINE:

{ A chocolate-coated-chocolate tycoon called

Chesterton | head of the C-CC corporation |

has 27 shops for selling his product in and around

New York.

{ Productivity has decreased and a management

consultant has been called in, Arabella Swinson.

{ She suggests to implement management-by-

objectives.

{ I.e. every shop is assigned a sales target

each month; the manager then encourages every

employee to reach that target.

{ In order to keep track of how well each

shop is performing relative to its sales target,

Mr. Chesterton engages ESSARES Software

Engineering to computerize the management-by-

objectives scheme.

110

The Rapid Prototype Case Study

Mr. Chesterton explains to Chip Brokenshaw, a

prototyper at Essares (SRS), how management-by-

objectives works:

� Each of his 27 shops is assigned a sales target for

each month.

� E�ectivity in reaching this target is measured,

according to Chesterton, using the following

concept:

E�ectiveness

def

=

actual sales

target sales

� 100%

� In case \E�ectiveness" is less than 100 % over a

month, the computer should send a report to the

shop manager, stating that the objective for that

month has not been met.

111

Otherwise, if \E�ectiveness" is � 100 %, the report

states that the objective for that month has been

achieved.

� All reports must be sent to the relevant region

manager (Chesterton has shops in New York -NY-

, Delaware -DE-, Pennsylvania -PA-) with copies

to the vice-president for sales of the C-CC

corporation.

� The C-CC corporation has 27 shops in 3 states: 15

in NY, 8 in PA, 4 in DE. Each state constitutes a

sales region with a region manager; the 3 region

managers are subordinate to the vice-president for

sales.

� These 4 people should, apart from all the shop

managers, receive monthly progress reports stating

the target data for a given shop for the whole

year, and the actual sales from January up to

the current month.

� Then Chip B. announces he'll construct a rapid

prototype, i.e., he explains that he'll write a program

112

that won't do everything the complete product does,

but that will do the key things (here B. makes an

error).

� Subsequently Chesterton asks: \Which

programming language are you going to use

for the prototype?"

� Brokenshaw answers: \Smalltalk, Prolog, Hypertext

or another 4th generation language."

� Chesterton answers: \My son-in-law learned C at

college. C is the language of the future. So C

should be used throughout. "

� (Brokenshaw's 2nd error): B. gives in, because he

needs the project.

� Then B. leaves stating he'll return next day with a

prototype written in C (it is shown in appendix B

of Schach's Practical Software Engineering, IRWIN

publ. comp.) (here he could have corrected his 1st

error.)

113

� B. returns next day and shows a sample report:

Figure 5: Output from �rst version of rapid prototype

� Chesterton answers critically:

1. All headings must be in uppercase letters.

114

2. The �rst month the target was 40 K$, of

which 20 K$ actually earned, the 2nd month

sales doubled to 40 K$, but since the target was

50 K$, taken literally the objective has not been

achieved. However, the double sales should

be rewarded, and not punished, by stating

\Objective Received: No" in February.

� Brokenshaw �nds a solution (and makes the �rst

correction upon the SRS C-CC example speci�cation

of his client), by introducing the concept shortfall:

Shortfall

def

= 100% � E�ectiveness

as a separate category for evaluation, and proposes

that a shop fails its objective only if the shortfall is

more than half of that of the previous month.

� Chesterton agrees and Brokenshaw states he'll �x

the prototype and return in half an hour (here B.

makes another mistake, as we'll see).

115

� Brokenshaw returns and displays:

Figure 6: Output from second version of rapid

prototype

116

� Chesterton approves the column for February but

disapproves the column for April, because if the

shortfall is 5 % or less he �nds the objectives are

still reached (this is the 2nd correction upon C's

original speci�cation).

� Brokenshaw withdraws and produces �gures 3 and

4 below:

117

Figure 7: Report produced by third version of rapid

prototype

118

Figure 8: Report produced by third version of rapid

prototype

� He returns, shows them to C, who approves his rapid

prototype and says: \When do I get the complete

product?" (Here B. makes another mistake.)

119

Lessons From The Case Study

1. As a consequence of developing a rapid prototype,

a number of improvements on the original

speci�cation given by Chesterton could be made,

re
ecting his real needs as opposedto the needs he

originally stated. Consequently, the requirements

phase has been successful.

2. What Brokenshaw built was a rapid prototype, i.e.:

(a) it was built quickly so that product development

time was not unnecessarily prolonged,

(b) it was easy to modify ; this is essential since that

is the main criterion { it should be easy to modify

so as to establish the clients' real needs, and

(c) it re
ected the essential aspects of the product,

in this case the included I/O behavior, i.e. the

functionality of the product, allowing the client

to see for himself whether this was what he/she

really wanted.

120

3. Once a rapid prototype has been constructed there

is only one thing to do { THROW IT AWAY. WHY?

(a) Any form of enhancement constitutes a change

to a running product and is consequently 50{100

times more expensive than changing requirements

or the speci�cation.

(b) A prototype is usually full of faults.

(c) The expensive thing to do is to reuse a prototype;

the cheap alternative is to throw it away and start

the speci�cation phase.

(d) A rapid prototype does not incorporate any

security or safety features, neither does it handle

exceptions (describing how the product responds

upon detecting erroneous data at run time).

(e) Using a rapid prototype as �nal product

compromises its future maintainability because

of lack of documentation.

4. The best way to ensure that a rapid prototype is

not anymore used after the requirements phase is

writing it in another language than the one selected

for implementing the �nal product.

121

Brokenshaw's Mistakes

1. C.B's �rts mistake was that he let himself

be intimidated by Chesterton in his choice of

implementation language for the prototype. An

interpreted language (where programs needn't be

linked and loaded) allows a rapid prototype to be

constructed faster and more
exibly.

2. Brokenshaw's second mistake was that he did

not explain to Mr. Chesterton in su�cient depth

about the distinction between a prototype and a

production-quality implementation.

Especially after seeing that the prototype has been

changed in 30 minutes Chesterton won't understand

why maintaining the product takes so much time.

Also now, he won't understand why it will take that

long to produce the endproduct.

3. Brokenshaw's third mistake (which relates to the

one described above) is that he didn't explain to

122

Chesterton the importance of documentation. What

Brokenshaw should have done is that he should

have reported to his manager, who should have

experience in dealing with people s.a. Chesterton.

This manager would have explained tactfully to

Chesterton that what he, Chesterton needed is a

well-functioning and well documented product, and

then would have presented the various alternatives,

out of which Chesterton could then select the most

cost-e�ective one.

4. B's fourth mistake was that he didn't show the

prototype to any shop manager, region manager

nor to the vice-president for sales, for these real

users could have informed him better of their real

needs.

123

Testing during the Rapid Prototyping

Phase

� The primary purpose of a rapid prototype is to

determine the clients' real needs. To this end it

is extremely important to consult the users of the

�nal product. (After all, the only contact with many

clients is usually paying the bill, after �nishing the

speci�cation phase.)

� Consequently that's the task of the SQA group

during the prototype phase: seeing to it that the

users of the endproduct get su�cient possibilities

to interact with the prototype.

124

Case Tools for Rapid Prototyping

� Interpreted languages are best for rapid prototyping

because the programs written in them needn't be

linked, loaded and compiled.

� Many rapid prototyping languages have associated

with case tools, e.g. the UNIX Shell programming

language is supported by the UNIX programmer's

Workbench.

125

Homework Assignment

� Construct a rapid prototype for the ChocAn product.

What components of the functionality of the

�nal product have you deliberately omitted from

your prototype? What components have you

implemented only partially? Which aspects have

you accentuated, and why?

126

