
Introduction to Objects

� The theory of modularity underwent steady progress

during the 1970's and 1980's and objects resulted

as a logical development within the theory of

modularity.

173

� Recall the Object{Oriented paradigm as explained

on transparencies 8{10. Objects are the answer of

(the responsible part of) the system's programmer's

world to the fact that programs tend to become

larger and more complex, in that objects provide a

basis for the maintenance of such programs. They

do so by adding encapsulation and inheritance to

abstract data types, thereby increasing modularity

and decreasing the incidence of regression errors

during the maintenance phase.

� This chapter describes objects in the context of

modularity as the next steps in the body of

knowledge that begins with the concept of a module.

� The key de�nitions of this chapter | taken from

chapter 6 of Schach's \Classical and O{O Software

Engineering" | are brie
y characterized in Figure 1

below.

174

Abstract data type a data type together with the actions

performed on instantiations of that data type

Abstraction a means of achieving stepwise re�nement by

suppressing unnecessary details and accentuating relevant

details

Class an abstract data type that supports inheritance

Cohesion the degree of interaction within a module

Coupling the degree of interaction between two modules

Data encapsulation a data structure together with the

actions performed on that data structure

Encapsulation the gathering together into one unit of all

aspects of the real-world entity modeled by that unit

Information hiding structuring the design so that the resulting

implementation details will be hidden from other modules

Object an instantiation of a class

Figure 1: Key de�nitions of this chapter

175

� And the progression of concepts in the theory

of modularization beginning with modules and

progressing to objects and beyond (as listed in

chapter 6 of op.cit.) is listed in Figure 2 below.

Objects with high cohesion and low coupling

*

Objects

*

Information hiding

*

Abstract data types

*

Data encapsulation

*

Modules with high cohesion and low coupling

*

Modules

Figure 2: Major concepts of Chapter 6

176



� When a large product consists of a simple

monolithic block of code, maintenance is a

nightmare. Even for the author of such a

monstrosity, attempting to debug the code is

extremely di�cult; for another programmer to

understand it is virtually impossible. The solution

is to break the product into smaller pieces, called

modules.

� What is a module? Is the way a product is broken

into modules important in itself, or is it important

only to break a large product into smaller pieces of

code?

� Yourdon and Constantine provide the following

characterization of a module:

\A module is a lexically continuous sequence

of program statements, bounded by boundary

elements, having an aggregate identi�er."

177

Examples of boundary elements are begin : : : end

pairs in a block{structured language like PASCAL

or ADA, or f : : : g pairs in C or C

++

.

� To understand the importance of modularization

consider the following contrived example.

A computer is characterized by:

Figure 3: Design of computer

178

� To build such a computer �rst 3 chips are connected,

of which Chip 1 contains the Registers, Chip 2 the

Arithmetic Logical Unit (ALU) and Chip 3 a Shifter,

as below in Figure 4.

Figure 4: Computer of Figure 3 fabricated on 3 chips

179

� These chips utilize AND, OR and NOT gates

(instead of NAND or NOR gates, as usual). Now

these chips are redesigned as to contain all the AND

gates on one chip, all OR gates on a second chip

and all the NOT gates on a third one. The resulting

\work of art" is shown in Figure 5 below:

Figure 5: Computer of Figure 3 fabricated on 3 other chips

180



� Now it is in the intention of the designers that

Figure 4 and 5 show functionally equivalent designs,

i.e. they display hardware having the same overall

behavior.

� What's their di�erence?

1. Figure 5 is harder to understand than Figure 4, which

is immediately recognized by anybody acquainted

with digital logic.

2. Corrective maintenance of the circuits shown in

Figure 5 is di�cult ; it will be di�cult to locate

the faults in Figure 5, of which there will be many

due to the unclarity of the design.

3. A fault in the design of Figure 4 is easier located by

determining whether it appears to be in the way the

ALU works, the shifter works, or the registers work.

4. If the computer of Figure 4 breaks down, it is

relatively easy to determine which chip to replace;

if the computer of Figure 5 breaks down, it is

probably best to replace all three chips.

181

5. The computer of Figure 5 is di�cult to extend

or enhance; a new ALU or faster registers will

necessitate a new design, while in case of the

computer of Figure 4 it is easy to replace the

appropriate chips.

6. Worst of all, the chips in Figure 5 cannot be reused

in any new product.

� The point is that software products have to be

designed to look like Figure 4, where there is

\a maximal relationship within each chip and a

minimal relationship between chips".

� The maintenance e�ort whether corrective

(removing software errors), perfective (extending

the functionality) or adaptive (adaptation to new

hardware) is reduced when there is no such maximal

interaction within each module and minimal

interaction between modules

182

� This led to considering these two kinds of interaction

separately:

{ that of module cohesion, the degree of interaction

within a module, which should be high, and

{ that of module coupling, the degree of interaction

between modules, which should be low.

183

Module Cohesion

� Meyers distinguishes at least 7 levels of cohesion

as in Figure 6 below.

7. Functional cohesion (Good)

Informational cohesion

5. Communicational cohesion

4. Procedural

3. Temporal

2. Logical

1. Coincidental cohesion (Bad)

Figure 6: Levels of cohesion

� We won't de�ne all these concepts but give some

examples.

184



� An example of a module with coincidental cohesion,

i.e. low cohesion, is in the module:

print next line; reverse the string of characters

comprising the second argument; add 7 to the

�fth argument; convert the fourth argument to


oating point.

� Why is such a module bad?

1. From the viewpoint of trying to understand this

module (during maintenance) it is bad, because it

lacks a clear purpose; errors cannot be easily traced

to one of its components; it has little structure.

2. It is unlikely such modules can be reused | the

money spent on its design can never be recouped.

� A module has temporal cohesion when it performs

a series of actions related in time, i.e. the module:

open old master �le, new master �le,

transaction �le, and print �le,

initialize sales district table, read

�rst transaction record and �rst

old master �le record.

185

The problem with this module is that its actions are

weakly related to one another (almost independent),

but more strongly to actions in other modules. Thus

if the sales district table is changed, a number of

such modules will also have to be changed. This

increases the occurrence of regression faults.

� Consequently, it is much better to have all

operations on the sales district table inside one

module | this is called informational cohesion. A

module has informational cohesion if it performs

a number of actions, each with its own entry

point, with independent code for each action, all

performed on the same data structure, see, e.g.,

Figure 7 below.

186

Figure 7: Module with information cohesion

� A module that performs exactly one action or

achieves a single goal has functional cohesion. Such

modules can be reused and lead to fault isolation.

Examples of modules with functional cohesion are

suggested below:

{ get temperature of a furnace,

{ calculate sales mission,

{ write to diskette.

187

Module Coupling

� Recall coupling in the degree of interaction between

two modules | it should be low.

� Again coupling is split into levels, as in Figure 8

below:

5. Data coupling (Good)

4. Stamp coupling

3. Control coupling

2. Common coupling

1. Content coupling (Bad)

Figure 8: Levels of coupling

188



� Examples of context coupling are:

{ Module p branches to a logical label of module q. It

will be clear that redesign of q leads to redesign of

p | i.e. p and q cannot be changed independently

of each other.

{ Module p refers to logical data of module q in

terms of some numerical displacement within q.

The same criticism applies.

Such modules are inextricably intertwined.

� An example of control coupling is:

{ A module p calls a module q, and q passes back a


ag to p saying \I am unable to complete my task;

accordingly write error message ABC123."

The major di�culty that arises as a consequence

of such coupling is that the two modules are not

independent; module q, the called module, has to

be aware of the internal structure of module p, its

caller.

189

� Stamp coupling occurs if some data structure is

passed as an argument, but the called module

operates on only some of the individual components

of that data structure.

{ Such coupling may lead to computer crime, and

again necessitates to look for which components are

updated upon, upon maintenance, in case of a need

for changing the code of such modules, which may

lead to regression faults if one such component is

overloaded.

� Two modules are data coupled if all arguments are

homogeneous data items, i.e., every argument is

either a simple argument or a data structure in

which all elements are used by the called module.

Data coupling between two modules is the more

desirable case.

190

Data Encapsulation

� Consider the following example:

{ Any job submitted to a particular computer

is classi�ed in having high priority, medium

priority or low priority. And consider the

restricted problem of batch jobs queuing up for

memory access.

{ I.e., there are three queues for incoming batch

jobs, one for each priority level.

{ When a job is submitted by a user it is added in

the appropriate queue, when the operating system

decides a job is ready to run it is removed from

its queue and memory is allocated to it.

� There are a number of di�erent ways to build this

portion of the product, illustrated in Figure 9 and

10 below.

191

Figure 9: One possible design of job queue portion of operating

system

192



Figure 10: Design of job queue portion of operating system

using data encapsulation

� The modules of the design of Figure 9 have low

cohesion, because their actions on the job queue

are spread all over the product. If the way a job

queue is implemented is changed, i.e. to a linked

list of records instead of as a linear list, modules

m 1, m 2 and m 3 as well as m 123 have all to

be changed, too.

193

� The point of Figure 10 is that this is not the

case, Figure 10 is an implementation of data

encapsulation, i.e. a data structure (i.e. job queue),

together with all the actions to be performed on

that data structure.

194

What is the Advantage of Data

Encapsulation?

� From the viewpoint of development, the developer

is able to conceptualize the problem as a higher

level, that of jobs and job queues, rather than at

the lower level of records and arrays.

� I.e., at the higher level stage it is entirely irrelevant

how the job queue is implemented. Once the

complete higher{level design has been obtained, the

second step is to design the lower level components

in terms of data structures they will be implemented

in. At this level the design totally ignores the

intended use of jobs, job queues and actions.

195

� Thus, during the �rst step merely the existence

of the lower level is assured, while at the second

step the existence of the higher level is ignored.

Consequently, a change of implementation at the

lower level does not a�ect the higher level at all.

� From the viewpoint of maintenance, data

encapsulation of data structures is advantageous

because data structures as such are unlikely to

change. Only the speci�c way they are implemented

changes. Data encapsulation o�ers a way of

coping with that change by factoring it out at the

higher level of use of data structure operations

and coping with it at the lower level of their

implementation.

� This is illustrated in Figures 11 and 12 below.

196



// See the Just in Case You Wanted to Know box for details

static int queue length;

static int job queue[25];

void initialize job queue(void)

/* empty job queue has length 0 */

f queue length = 0; g

void add job to queue(int job number)

/* add job to end of job queue */

f

job queue[queue length] = job number;

queue length = queue length + 1

g

void remove job from queue(int& job number)

f

job number = job queue[0];

queue length = queue length - 1

for(int k=0; k<queue length; k++)

job queue[k] = job queue[k+1];

g

Figure 11: C++ implementation of compilation unit

m encapsulation.c

197

Figure 12: C++ implementation of compilation unit

m encapsulation.C using a two{way linked list

198

� Figure 11 illustrates an C

++

implementation of

compilation unit m encapsulation.C in terms of an

array of up to 25 job numbers. The reserved word

static ensures that queue length and job queue are

not visible outside m encapsulation.C, and can be

modi�ed only inside that compilation unit. Each

job number is represented as an integer. Also,

the ampersand & is necessary in the declaration

of function remove job from queue because its

argument is passed by reference.

� Figure 12 features an implementation of that

module using a two{way linked list, i.e. using the

two{way linked job record data structure illustrated

in Figure 13 below.

199

struct job record

f

int job no; //number of the job

struct job record *in front; //pointer to job record in front

struct job record *in rear; //pointer to job record behind

g;

Figure 13: C++ speci�cation of two{way linked job record

� Next consider Figure 14 below, featuring an c

++

implementation of m 123.

200



void m 123(void)

f

extern void initialize job queue (void);

extern void add job to queue (int job number);

extern void remove job from queue (int& job number);

int job a, job b;

// various statements

initialize job queue();

// more statements

add job to queue (job a);

// still more statements

remove job from queue (job b);

// further statements

g

Figure 14: C++ implementation of m 123

201

� The extern statements in m 123 above

indicate that the functions initialize job queue,

add job to queue, remove job from queue have

been de�ned elsewhere (the linker will locate

their de�nitions in m encapsulation: the interface

information regarding these three functions.

� Since this interface is the same for the

implementation of m encapsulation.C of Figure 11

and of Figure 12, it does not matter from the

viewpoint of m 123 which implementation of this

compilation unit is taken.

� Thus data encapsulation supports the

implementation of data abstraction in a way

that simpli�es product maintenance and reduces

the chance of regression faults.

202

Abstract Data Types

� A major di�culty with both implementations of

m encapsulation is that they apply only to one

queue.

� Rather than specifying a data structure, together

with relevant actions, it would be more useful to

have a data type, together with the actions to

be performed on instantiations of that data type.

Such a construct is called an abstract data type and

is illustrated in Figure 15 below.

203

Figure 15: Job queue implemented in C++ as abstract data

type. The code is stored in header �le job queue.h

� This C

++

implementation of the job queue abstract

data type uses a struct construct. Compare

Figure 15 with Figure 11.

204



{ One di�erence is that the declarations of

queue length and job queue are encapsulated in

struct job queue type in Figure 15, whereas there

are independent declarations of queue length and

job queue as static variables in Figure 11.

{ The second di�erence is that the three functions,

namely initialize job queue, add job to queue and

remove job from queue are now members of the

structure.

� The abstract data type of Figure 15 is stored in

header �le job queue.h.

Figure 16 below shows how this abstract data

type may be utilized. Two job queues are

instantiated, queue 1 and queue 2. E.g., the

statement queue 1.initialize job queue() means:

apply function initialize job queue to structure

queue 1.

205

� The #include statement causes the entire �le

job queue.h to be copied into module m 123 below.

#include "job queue.h"

void m 123(void)

f

job queue type queue 1, queue 2;

int job a, job b;

// various statements

queue 1.initialize job queue();

// more statements

queue 2.add job to queue(job a);

// still more statements

queue 1.remove job from queue(job b);

// further statements

g

Figure 16: C++ module m 123 using abstract data type of

�gure15

206

� Abstract data types support both data abstraction

(i.e., the product is produced in terms of high{

level concepts such as jobs, job queues, and the

operations that are performed on job queues) and

procedural abstraction. The latter extends the

programming language by supplying the developer

with other user{de�ned functions that are part of

the language as originally de�ned. These functions

are de�ned in terms of lower level actions of the

language, and so on, until the lower level is reached.

Important are two points:

{ The designer can ignore the level below, which will

be handled at the next level of abstraction, that is,

the next re�nement step.

{ The designers can also ignore the level above, a level

that is irrelevant from the viewpoint of designing the

current level.

207

Information Hiding

� The two types of abstraction discussed, data

abstraction and procedural abstraction, are

instances of a more general design concept put

forward by David Parnas, namely information

hiding.

� Parnas' ideas are directed towards future

maintenance:

Before a product is designed, a list should

be made of implementation decisions likely

to change in the future. Modules should be

designed so that these implementation details

of the resulting design are hidden from other

modules. Thus any future change is localized

to one speci�c module. Because the details of

the original implementation decision are not

visible to other modules, changing the design

cannot a�ect any other module.

208



� Let's see how these ideas can be used in practice:

{ First, consider the data encapsulation

implementation of Figures 11 and 14. The only

implementation details of module m encapsulation

used in module m 123 are the names and the

interfaces of the functions that operate on a

job queue; static variables queue length and

job queue are not visible outside m encapsulation.

Consequently, no change needs to be made to

module m 123, when changing m encapsulation

to that of Figure 12.

{ Now consider the abstract data type implementation

of Figures 15 and 16. The primary reason for

using the abstract data type is to ensure that the

contents of a job queue can be changed exclusively

by invoking one of the three functions of Figure 15.

However this goal has not been achieved as yet!

209

{ As a consequence of the statement #include

"job queue.h", all of the header �le job queue.h

is visible to module m 123. In particular, the

precise details of how job queue is implemented are

accessible. As a result, it is legal in C

++

to use an

assignment statement such as

queue 1.job queue[7] = -5678

anywhere in m 123 to change queue 1.

{ Consequently, it is possible to change the contents of

a job queue without using any of the three actions

of the data type. In addition to lowering cohesion

and increasing coupling the product may now be

vulnerable to computer fraud.

{ Fortunately, there is a way out. The design

of C

++

provided for information hiding even

within a structure speci�cation. This is shown in

Figure 17, using the concepts of private and public

declarations. Apart from these concepts, Figure 17

is identical to Figure 15. But now the exact way

that job queues are implemented is private, and

invisible to the outside.

210

Figure 17: Abstract data type implementation with information

hiding, correcting the problem of Figure 15

211

{ The diagram in Figure 18 shows how a structure

with private data enables a C

++

user to implement

an abstract data type with full information hiding.

Figure 18: Representation of abstract data type with

information hiding achieved via structure with private data

(Figures 16 and 17)

212



Objects

� Consult again Figure 19 below.

Objects with high cohesion and low coupling

*

Objects

*

Information hiding

*

Abstract data types

*

Data encapsulation

*

Modules with high cohesion and low coupling

*

Modules

Figure 19: Major concepts of Chapter 6

� Objects are simply the next step in the evolution of

modularization concepts after abstract data types

and information hiding.

I.e. they are abstract data types or modules with

information hiding.

213

� In more detail,

an incomplete de�nition of an object is an

instance of an abstract data type.

� However, objects also feature inheritance. The

basic idea is that new data types can be de�ned as

extensions of previously de�ned types, rather than

de�ning them from scratch, using the concept of

class.

� A class is an abstract data type with information

hiding that supports inheritance. An object is an

instantiation of a class. See Figure 20 below:

214

Figure 20: C++ implementation of Figure 21

� In Figure 20 a class, i.e. an abstract data

type with information hiding with operations age,

height and gender de�ned, called Human Being.

However, it also features an extension of that

class by the operations name of spouse[20] and

number of children, called Parent.

215

� The relationship between classes Parent and

Human Being is depicted in Figure 21.

Figure 21: Derived types and inheritance

� Parent is a derived class, and inherits all the

attributes from, i.e., \is a", Human Being, which

is the base class of this example.

� The last development in the theory of

modularization is that of polymorphism and

dynamic binding, for which we refer to Section

6.8 of Schach's op.cit.

216


